首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
金属基复合材料概述(1)   总被引:1,自引:0,他引:1  
金属基复合材料是由陶瓷颗粒成纤维(如SiC,Al2O3,TiC,TiB等)增强金属或者合金基体而得到的,具有高的比刚度、比强度、耐磨性和高温性能,且具有可设计性,是一类高性能先进材料,在航空、航天、汽车等领域具有良好的应用前景。东南大学已开发出铝基、镁基、锌基、钛基等多种复合材料,有些已开始应用于汽车发动机。目前,可供应多种金属基复合材料的铸件与型材。  相似文献   

2.
SiC纤维增强金属基复合材料是一种性能优越的新型工程材料。本文在收集和整理近二十年来国外有关专利文献的基础上,概述了SiC 纤维和晶须的制备方法,SiC 纤维或晶须增强金属基复合材料的研制和应用,以及一些技术问题的解决途径。文中还列举了一些工业上的应用实例,如SiC 纤维增强钛和镍合金等。  相似文献   

3.
冉娜  谢娥  李坤  钟干  黎阳 《现代机械》2012,(2):84-85,94
利用粉末冶金法制备出了SiC颗粒增强铝基复合材料(SiCp/Al),研究了SiC颗粒添加量对复合材料布氏硬度、抗拉强度及显微结构的影响。结果表明:SiC颗粒在基体材料中分布均匀,界面清晰;SiCp/Al复合材料的硬度与抗拉强度随SiC颗粒含量的增加先升高后降低,在SiC颗粒添加量为7 Wt%时,硬度与抗拉强度达到最大值,分别为89.4HBS与311MPa。  相似文献   

4.
周艳华 《工具技术》2017,51(4):7-10
随着严酷工程环境要求的不断提高,单一材料已无法满足现代工程应用的需求,具有高性能和新功能的先进复合材料尤其是金属基复合材料的需求日益增长。本文总结了近年关于碳化硅颗粒增强铝基复合材料的制备方法和性能特点,以便了解碳化硅颗粒增强铝基复合材料的主要制备技术及发展状况。  相似文献   

5.
熔化焊是应用最广泛的金属焊接方法,但是用来连接金属基复合材料(MMC)时却遇到了新的问题。采用电弧焊加热熔化时,大部分颗粒增强铝基复合材料的熔融液粘度很高,以至于事实上,熔化的MMC并不同填充金属溶合在一起,甚至于采用流动性很好的填充材料如4047A也没能收到实在的效果。熔化温度提  相似文献   

6.
铝基复合材料阻尼性能研究   总被引:2,自引:1,他引:2  
研究了金属基复合材料的不同纤维含量及热处理对铝基复合材料阻尼性能的影响。研究结果表明,纤维含量以及热处理影响铝基复合材料的阻尼性能。铝基复合材料的阻尼性能主要由材料的微观组织结构(基体、界面、增强体)决定。  相似文献   

7.
目前正在研究一种SiC晶须增加Al基复合材料(MMC)机械性能的方法。其过程包括:晶须预制块的制作;用液态金属渗入法制造毛坯以及毛坯的热挤压。制取的MMC其SiC晶须体积百分数V_f可超过30%,并且可以成功地进行挤压。  相似文献   

8.
本文提出了制备碳化硅颗粒增强铝基复合材料渗透法新工艺,该工艺主要特点是:在空气气氛下干850-950℃温度范围内,不用外加压力或真空,通过助渗剂作用,使铝或铝合金液自动地渗入增强颗粒内部制金属基复合材料。  相似文献   

9.
张文琼  方亮  谢天 《润滑与密封》2021,46(8):108-114
搅拌法制备SiC颗粒增强铝基复合材料时铺粉工艺对材料性能影响很大,影响SiC颗粒能否均匀地嵌入基体中。研究黏接剂、SiC颗粒粒径、颗粒铺粉厚度等对搅拌摩擦制备SiC颗粒增强铝基复合材料的影响。以焊缝宏观质量、SiC颗粒体积分数与硬度、基体组织及颗粒、复合材料不同深度维氏硬度、复合区面积(宏观)为表征参量对制备的复合材料进行表征,并得出最佳的铺粉工艺。结果表明:相比于α-氰基丙烯酸乙酯,聚乙烯醇作为黏接剂时,复合材料中SiC颗粒的分布更加均匀;嵌入基体的SiC颗粒体积分数随着SiC粉末粒径的增加而增加,而基体中SiC颗粒体积分数相同情况下,SiC颗粒的粒径越小对基体材料硬度的提高越明显;复合材料中SiC颗粒增强区面积会随着铺粉厚度的增加而增加,但增加铺粉厚度会使得SiC颗粒增强区硬度、体积分数的变化梯度增加。  相似文献   

10.
SiC颗粒增强铝基复合材料的摩擦磨损机制研究   总被引:1,自引:1,他引:0  
SiC颗粒增强铝基复合材料是一种性能优异的高速摩擦材料,作为刹车材料必将在陆上运输领域得到广泛应用。但SiC颗粒增强铝基复合材料的摩擦磨损性能强烈地依赖于实验条件和制备工艺。综述了各种因素对SiC颗粒增强铝基复合材料摩擦磨损性能的影响,总结了SiC颗粒增强铝基复合材料摩擦磨损机制,并指出了SiC颗粒增强铝基复合材料需进一步深入研究的问题及新的研究方向。  相似文献   

11.
碳化硅颗粒增强铝基复合材料的制备及应用的研究   总被引:2,自引:0,他引:2  
综述了碳化硅颗粒增强铝基复合材料(SiCp/Al基复合材料)的研究进展,重点阐述了国内外现阶段碳化硅颗粒增强铝基复合材料的常用制备方法,并结合其应用现状进一步分析了各种常用制备方法的优缺点和未来的研究方向,在此基础上展望了其未来的发展和应用前景。  相似文献   

12.
本文提出了制备碳化硅颗粒增强铝基复合材料渗透法新工艺,该工艺主要特点是:在空气气氛下于850~950℃温度范围内,不用外加压力或真空,通过助渗剂作用,使铝或铝合金液自动地渗入增强颗粒内部制成金属基复合材料。  相似文献   

13.
采用真空热压粉末冶金烧结工艺制备了含SiC颗粒体积分数分别为 5 %、15 %和 2 5 %的SiC颗粒增强铝基复合材料 ,结合其力学性能、扫描电镜和界面微区能谱分析结果 ,分析了SiC/Al复合材料的真空烧结过程中的界面现象 ,以及材料增强和断裂机理。结果表明 ,真空烧结过程中出现了界面反应 ,改善了界面结合强度 ,断裂破坏主要在基体上进行。随着SiC粒子体积分数的增加 ,SiCp/Al复合材料的抗拉强度增加 ,弹性模量显著增加 ,延伸率降低 ,材料脆性增加。  相似文献   

14.
自本世纪中期以来,随着尖端技术发展的需要,人们越来越重视发展以晶须或纤维增强的复合材料。晶须或纤维增强复合材料是指在树脂基体或金属基体内,埋入一种细丝状(如晶须、纤维或细金属丝等)的强化组元,使基体得到强化的一种材料。以金属或合金为基体的叫纤维增强金属基复合材料。金属基复合材料既具有很高的抗拉强度,又兼有优异的韧性。此外,晶须或纤维,尤其是陶瓷型的强化组元增强的金属基复合材料,还具有优异的高温强度、耐热震性,耐蚀性等等特殊的性能。它们的比强度和比刚度也显著地优于普通的材料。本文简要地介绍了晶须的获得及其机械性能和晶须及纤维增强复合材料的制造方法等有关的问题以供机械设计、制造和材料科学工作者参考。  相似文献   

15.
Al基SiC颗粒强复合材料是一种新型复合材料,在切削颗粒增强复合材料时,切削性能和普通材料有很大差别,通过实验,从超声切削机理以及加工表面质量等方面对超声振动切削金属基复合材料的特性进行研究,为复合材料的高效加工提供理论依据。  相似文献   

16.
介绍了晶须的性质及铝基复合材料的性能特点,概述了国内外研究现状,提出了用水热法制备三氧化二铝晶须的新思路,分析了氧化铝晶须增强铝基的应用前景.阐明了开发氧化铝晶须的意义.  相似文献   

17.
直接金属氧化法制备SiCp/Al2O3-Al复合材料   总被引:2,自引:1,他引:2  
林营  杨海波  王芬 《机械工程材料》2005,29(6):27-29,47
利用直接金属氧化法制备了SiC颗粒增强Al2O3-Al基复合材料,借助于XRD和光学显微镜对该复合材料的组成及微观结构进行了观察,分析了SiO2层、合金成分和制备温度对复合材料性能的影响。结果表明:该复合材料结构致密且渗透完全,微观结构由三种相互穿插相组成:SiC预制体、连续的Al2O3基体及呈网状结构分布的未被氧化的残余铝合金。  相似文献   

18.
在单向晶须增强树脂基复合材料的三维单胞模型的基础上,利用细观力学有限元分析方法研究复合材料中SiC晶须体分比的变化对材料整体力学性能的影响.研究表明:在单向SiC晶须增强树脂基复合材料中,晶须体分比对晶须应力作用明显大于对基体的影响;随着晶须体分比的增加,界面剪切应力分布曲线下移;晶须体分比的变化对轴向弹性模量的影响远大于对横向弹性模量的影响.  相似文献   

19.
采用超声振动钻削的方法对金属基复合材料进行孔加工。在自行研制的超声钻削设备的基础上使用不同材质的硬质合金麻花钻,对不同含量的SiC颗粒增强铝基复合材料(SiCp/Al)进行了普通钻削与超声振动钻削的对比试验,并分析比较了加工中切削力的变化规律。试验表明,超声振动钻削可以降低切削力,在一定程度上改善钻削机理。  相似文献   

20.
为研究碳化硅颗粒增强铝基(SiCp/Al)复合材料钻孔出口处崩边损伤及其形成原因,建立了简化的二维钻孔出口有限元模型,选用Johnson-Cook本构模型、Brittle Cracking本构模型和零厚度内聚力单元分别作为铝基体、碳化硅颗粒和Al-SiC界面的本构。根据仿真结果分析了钻孔出口处崩边损伤的形成过程以及钻削过程中进给量对崩边损伤尺寸和轴向钻削力的影响。结果表明:SiCp/Al复合材料崩边损伤尺寸和轴向钻削力会随着钻头进给量的增加而增加;崩边损伤形成的关键在于是否有合适的铝基体塑性变形将萌生的微裂纹进行桥接,且崩边损伤尺寸大小与颗粒分布方式有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号