首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Topological analysis of the three‐dimensional (3D) chromatin nanostructure and its function in intact cell nuclei implies the use of high resolution far field light microscopy, e.g. confocal laser scanning microscopy (CLSM). However, experimental evidence indicates that, in practice, under biologically relevant conditions, the spatial resolution of CLSM is limited to about 300 nm in the lateral direction and about 700 nm in the axial direction. To overcome this shortcoming, the use of a recently developed light microscopical approach, spectral precision distance microscopy (SPDM) is established. This approach is based on the precise localization of small labelling sites of a given target in spectrally differential images. By means of quantitative image analysis, the bary centres (intensity weighted centroid analogous to the centre of mass) of these independently registered labelling sites can be used as point markers for distance and angle measurements after appropriate calibration of optical aberrations (here, polychromatic shifts). In combination with specific labelling of very small chromatin target sites with dyes of different spectral signatures by fluorescence in situ hybridization (FISH), SPDM presently allows us to analyse the nuclear topology in three‐dimensionally conserved nuclei with a ‘resolution equivalent’, many times smaller than the conventional optical resolution. Chronic myelogeneous leukaemia (CML) is genetically characterized by the fusion of parts of the BCR and ABL genes on chromosomes 22 and 9, respectively. In most cases, the fusion leads to a translocation t(9; 22) producing the Philadelphia chromosome. SPDM was applied to analyse the 3D chromatin structure of the BCR region on the intact chromosome 22 and the BCR‐ABL fusion gene on the Philadelphia chromosome (Ph) by using a new triple‐colour FISH protocol: two different DNA probes were used to detect the BCR region and the third DNA probe was used to identify the location of the ABL gene. Consistent 3D distance measurements down to values considerably smaller than 100 nm were performed. The angle distributions between the three labelled sites on the Philadelphia chromosome territory were compared to two state‐of‐the‐art computer models of nuclear chromatin structure. Significant differences between measured and simulated angle distributions were obtained, indicating a complex and non‐random angle distribution.  相似文献   

2.
We applied a novel silanized mica substrate with an extremely flat surface constructed according to Sasou et al. (Langmuir 19, 9845-9849 (2003)) to high-resolution detection of a specific gene on a DNA fiber by scanning near-field optical/atomic force microscopy (SNOM/AFM). The interaction between the substrate and fluorescence-dye conjugated peptide nucleic acid (PNA) probes, which causes fluorescence noise signal, was minimal. By using the substrate, we successfully obtained a fluorescence in situ hybridization signal from the ea47 gene on a λphage DNA labeled with an Alexa 532-conjugated 15-base PNA probe. As the results, no fluorescence noises were observed, indicating that the surface adsorbed almost none of the PNA probe. The combination of the substrate and SNOM/AFM is an effective tool for visualizing DNA sequences at nanometer-scale resolution.  相似文献   

3.
Molecular analyses such as fluorescence in situ hybridization (FISH) and polymerase chain reaction (PCR) are demanded to improve diagnostic accuracy in addition to immunohistopathology of bone marrow (BM) trephine specimens. Conventional BM embedding method needs decalcification, and its procedure may impair tissue morphology and DNA quality. Here, we report an undecalcified method by which glycol methacrylate resin is polymerized at low temperature (4°C). Using this method, BM enzyme activity and antigenic determinants are well preserved, and moreover, DNA extracted from plastic embedding sections is suitable for PCR amplification and sequencing, FISH analysis can be well done because of the DNA integrity of BM sections. If working with BM trephine specimen, our protocol offers the possibility to combine superior morphology with modern molecular analysis. Microsc. Res. Tech. 73:1067–1071, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

4.
5.
Fluorescence in situ hybridization on human metaphase chromosomes is detected by near-field scanning optical microscopy. This combination of cytochemical and scanning probe techniques enables the localization and identification of several fluorescently labelled genomic DNA fragments on a single chromosome with an unprecedented resolution. Three nucleic acid probes are used: pUC1. 77. p1–79 and the plasmid probe α-spectrin. The hybridization signals are very well resolved in the near-field fluorescence images, while the exact location of the probes can be correlated accurately with the chromosome topography as afforded by the shear force image.  相似文献   

6.
In this study we have employed atomic force microscopy (AFM) and scanning near‐field optical microscopy (SNOM) techniques to study the effect of the interaction between human keratinocytes (HaCaT) and electromagnetic fields at low frequency. HaCaT cells were exposed to a sinusoidal magnetic field at a density of 50 Hz, 1 mT. AFM analysis revealed modification in shape and morphology in exposed cells with an increase in the areas of adhesion between cells. This latter finding was confirmed by SNOM indirect immunofluorescence analysis performed with a fluorescent antibody against the adhesion marker β4 integrin, which revealed an increase of β4 integrin segregation in the cell membrane of 50‐Hz exposed cells, suggesting that a higher percentage of these cells shows a modified pattern of this adhesion marker.  相似文献   

7.
介绍了近年来近场光学探针技术的进展,特别是可与扫描力显徽镜结合的探针制备技术。  相似文献   

8.
The tetrahedral tip is introduced as a new type of a probe for scanning near-field optical microscopy (SNOM). Probe fabrication, its integration into a scheme of an inverted photon scanning tunnelling microscope and imaging at 30 nm resolution are shown. A purely optical signal is used for feedback control of the distance of the scanning tip to the sample, thus avoiding a convolution of the SNOM image with other simultaneous imaging modes such as force microscopy. The advantages of this probe seem to be a very high efficiency and its potential for SNOM at high lateral resolution below 30 nm.  相似文献   

9.
Fluorescence in situ hybridization coupled with far‐field fluorescence microscopy is a commonly used technique to visualize chromosomal aberrations in diseased cells. To obtain the best possible results, chromatin integrity must be preserved to ensure optimal hybridization of fluorescence in situ hybridization probes. However, biological samples are known to degrade and storage conditions can be critical. This study concentrates its investigation on chromatin stability as a function of time following fluorescence in situ hybridization type denaturing protocols. This issue is extremely important because chromatin integrity affects the fluorescence response of the chromosome. To investigate this, metaphase chromosome spreads of human lymphocytes were stored at both ?20 and ?80 °C, and were then imaged using scanning near‐field optical microscopy over a nine month period. Using the scanning near‐field optical microscope's topography mode, chromosome morphology was analysed before and after the application of fluorescence in situ hybridization type protocols, and then as a function of storage time. The findings revealed that human chromosome samples can be stored at ?20 °C for short periods of time (~ several weeks), but storage over 3 months compromises chromatin stability. Topography measurements clearly show the collapse of the stored chromatin, with variations as large as 60 nm across a chromosome. However, storage at ?80 °C considerably preserved the integrity with variations in topography significantly reduced. We report studies of the fluorescent response of stored chromosomes using scanning near‐field optical microscopy and their importance for gaining further understanding of chromosomal aberrations.  相似文献   

10.
We describe an apertureless scanning near-field optical microscope (SNOM) based on the local second-harmonic generation enhancement resulting from an electromagnetic interaction between a probe tip and a surface. The imaging mechanisms of such apertureless second-harmonic SNOM are numerically studied. The technique allows one to achieve strongly confined sources of second-harmonic light at the probe tip apex and/or surface area under the tip. First experimental realization of this technique has been carried out using a silver-coated fibre tip as a probe. The experiments reveal a strong influence of the tip–surface interaction as well as polarization of the excitation light on images obtained with apertureless second-harmonic SNOM. The technique can be useful for studying the localized electromagnetic excitations on surfaces as well as for visualization of lateral variations of linear and nonlinear optical properties of surfaces.  相似文献   

11.
Scanning near-field optical microscopy (SNOM) has been successfully employed to generate high resolution (<100nm) fluorescence images of directly tagged human chromosomes. Direct tagging, fluorescence in-situ hybridisation processes (with and without amplification) are investigated and their fluorescence response to near-field excitation are compared. Using the simultaneous topography mode of SNOM, chromosome morphology was seen to differ as a result of the two processes; with chromatin collapse more extensive when the amplified direct tagging procedure was used. The results are discussed in the context of developing locus specific direct tags together with high resolution SNOM imaging for the observation of chromosome aberrations.  相似文献   

12.
A new microscope system that has the combined capabilities of a scanning near-field optical microscope (SNOM) and a scanning tunnelling microscope (STM) is described. This is achieved with the use of a single metallic probe tip. The distance between the probe tip and the sample surface is regulated by keeping the tunnelling current constant. In this mode of operation, information about the optical properties of the sample, such as its refractive index distribution and absorption characteristics, can be disassociated from the information describing its surface structure. Details of the surface structure can be studied at resolutions smaller than the illumination wavelength. The performance of the microscope is evaluated by analysing a grating sample that was made by coating a glass substrate with gold. The results are then compared with the corresponding SNOM and STM images of the grating.  相似文献   

13.
We have demonstrated Raman spectroscopy using scanning near-field optical microscopy (SNOM). Photon tunnelling mode was employed, in which the sample is illuminated using an attenuated total reflection (ATR) configuration and the evanescent wave perturbed by the sample is picked up by a sharpened optical fibre probe. By this experimental arrangement Raman scattering from the optical fibre probe was greatly reduced, therefore we were able to excite the sample using more intense laser light compared to the illumination mode SNOM. Raman spectra of copper phthalocyanine (CuPc) were obtained in the off-resonance condition and without using surface-enhanced Raman scattering (SERS).  相似文献   

14.
The influence of fixation and enzymatic digestions on the ability of a denatured double-stranded DNA probe to bind specifically to related sequences of RNA and DNA in sections of Lowicryl embedded cells was investigated. Specificity of the hybridization was assessed using a biotinylated cloned subgenomic herpes simplex virus type 1 DNA fragment to localize viral nucleic acids in sections of infected cells. The probe was detected by anti-biotin antibodies and indirect immunogold labeling. Controls indicated that protease digestion of proteins from the section eliminated non-specific binding of the probe and labeling of endogenous biotin. Both formaldehyde and glutaraldehyde fixation retained viral RNA in protease digested sections. Its labeling was randomly and sparsely distributed over the fibrillo-granular network of the infected nucleus and over the ribosome-rich regions of cytoplasm. Labeling of single-stranded portions of viral DNA in protease-RNase digested sections was infrequent. It was located precisely over nucleoids of a few viral nucleocapsids whatever their location in the cell and their stage of maturation. Labeling of double-stranded viral DNA by denaturation of the DNA in the sections of Lowicryl embedded cells was possible after fixation with formaldehyde but not glutaraldehyde. Among several denaturation protocols, 0.5 N NaOH treatment was best for hybridization of both nonencapsidated and encapsidated viral DNA in protease-RNase digested sections. Free viral genomes were detected exclusively within the virus-replicating region of infected nuclei. Labeling of viral nucleoids was independent of their location in the cell. The high percentage of labeled viral nucleoids suggests that the related viral DNA sequence is not aggregated in the nucleoid but is extended and therefore numerous portions of this defined DNA sequence are accessible at the surface of the section for the binding of the probe.  相似文献   

15.
We have developed a novel light source for use in a scanning near‐field optical microscope (SNOM or NSOM) based on a nanopipette whose distance from the sample surface is controlled using scanning ion conductance microscopy. The light source is based on the general principle of the chemical reaction between a fluorophore in the pipette and ligand in the bath, to produce a highly fluorescent complex that is continually renewed at the pipette tip. In these experiments we used fluo‐3 and calcium, respectively. This complex is then excited with an Ar+ laser, focused on the pipette tip, to produce the light source. This method overcomes the transmission problem of more traditional SNOM probes and has been used to acquire simultaneous high‐resolution topographic and optical images of biological samples in physiological buffer. A resolution of ~220 nm topographic and ~190 nm optical was determined through imaging fixed sea‐urchin sperm flagella. Live A6 cells were also imaged, demonstrating the potential of this system for SNOM imaging of living cells.  相似文献   

16.
A novel etching method for an optical fibre probe of a scanning near-field optical microscope (SNOM) was developed to fabricate a variety of tip shapes through dynamic movement during etching. By moving the fibre in two-phase fluids of HF solution and organic solvent, the taper length and angle can be varied according to the movement of the position of the meniscus on the optical fibre. This method produces both long (sharp angle) and short (wide angle) tapered tips compared to tips made with stationary etching processes. A bent-type probe for a SNOM/AFM was fabricated by applying this technique and its throughput efficiency was examined. A wide-angle probe with a 50° angle at the tip showed a throughput efficiency of 3.3 × 10−4 at a resolution of 100 nm.  相似文献   

17.
Nano-scale structures of the YOYO-1-stained barley chromosomes and lambda-phage DNA were investigated by scanning near-field optical/atomic force microscopy (SNOM/AFM). This technique enabled precise analysis of fluorescence structural images in relation to the morphology of the biomaterials. The results suggested that the fluorescence intensity does not always correspond to topographic height of the chromosomes, but roughly reflects the local amount and/or density of DNA. Various sizes of the bright fluorescence spots were clearly observed in fluorescence banding-treated chromosomes. Furthermore, fluorescence-stained lambda-phage DNA analysis by SNOM/AFM demonstrated the possibility of nanometer-scale imaging for a novel technique termed nano-fluorescence in situ hybridization (nano-FISH). Thus, SNOM/AFM is a powerful tool for analyzing the structure and the function of biomaterials with higher resolution than conventional optical microscopes.  相似文献   

18.
A. Naber  H. Kock  H. Fuchs 《Scanning》1996,18(8):567-571
Scanning near-field optical microscopy (SNOM) is used for lithography to avoid the resolution limiting diffraction of conventional optical methods. We have expanded a commercial SNOM for writing even complex structures on the nanometer scale. Scanning near-field optical lithography (SNOL) has been applied to conventional resists to explore its potential and the possible combination with conventional optical lithography (mix and match technique).  相似文献   

19.
Thin cross-sections of human hairs were investigated by scanning near-field optical microscopy (SNOM) and confocal laser scanning microscopy (CLSM) after penetration of a fluorescent dye. The same samples were measured with both techniques to compare the observed structures. The images obtained from the two methods show nearly identical structures representing pathways of the dye molecules in hairs. The SNOM images provide a higher resolution than the CLSM images. Therefore, SNOM is believed to be a suitable method for investigations at a resolution of 100 nm on penetration pathways of fluorescent dyes such as the cell membrane complex pathway in cross-sections of hairs.  相似文献   

20.
Scanning near-field optical microscopy of a cell membrane in liquid   总被引:1,自引:0,他引:1  
The applications of scanning near‐field optical microscopy to biological specimens under physiological conditions have so far been very rare since common techniques for a probe–sample distance control are not as well suited for operation in liquid as under ambient conditions. We have shown previously that our own approach for a distance control, based on a short aperture fibre probe and a tuning fork as force sensor in a tapping mode, works well even on soft material in water. By means of an electronic self‐excitation circuit, which compensates for changes of the resonance frequency due to evaporation of liquid, the stability of the force feedback has now been further improved. We present further evidence for the excellent suitability of the tapping‐mode‐like distance control to an operation in liquid, for example, by force‐imaging of double‐stranded DNA. Moreover, we demonstrate that a nuclear envelope in liquid can be imaged with a high optical resolution of ~70 nm without affecting its structural integrity. Thereby, single nuclear pores in the nuclear envelope with a nearest neighbour distance of ~120 nm have been optically resolved for the first time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号