首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
利用Silvaco-TCAD仿真软件全面系统地分析了不同发射区表面浓度和结深对n型插指背接触(IBC)太阳电池短路电流、开路电压、填充因子及转换效率的影响.借鉴双极半导体器件抗二次击穿技术,详细分析了不同发射区结深、发射区边缘刻蚀技术和发射区边缘选择性掺杂技术对IBC电池热击穿特性的影响.结果表明:发射区表面浓度越大、结深越深,IBC电池效率越高.当发射区表面浓度为5× 1020 cm-3、结深为1 μm时,转换效率高达23.35%.同时,深结发射区也有助于改善IBC电池的热击穿特性.发射区边缘刻蚀结构不具有改善IBC电池热击穿特性的作用,而发射区边缘选择性掺杂结构可有效改善IBC电池的热击穿特性,从而提高IBC太阳电池组件的可靠性.  相似文献   

2.
利用 Silvaco 公司的 Athena 工艺仿真软件和 Atlas 器件仿真软件,对 N 型插指背结背接触(InterdigitatedBack Contact,IBC)晶硅太阳电池普遍采用的前表面场(FSF)结构进行研究,详细分析了 IBC 晶硅电池 FSF 表面掺杂浓度及扩散深度对电池性能的影响。结果表明:具有不同表面掺杂浓度和扩散深度的 FSF 对 IBC 晶硅太阳电池短路电流密度(Jsc)、开路电压(Voc)和填充因子(FF)产生显著影响,从而影响电池的转换效率(Eff)。具有较低表面浓度、深扩散 FSF 结构的 IBC 晶硅太阳电池可获得较高转换效率,当表面掺杂浓度为 5×1017cm–3时,电池转换效率Eff最高,且随 FSF 扩散深度增加略有增加,最高转换效率可达 22.3%。  相似文献   

3.
利用Silvaco-TCAD半导体器件仿真软件对n型插指背接触(IBC)晶硅太阳电池衬底参数进行了优化,全面系统地分析了晶硅衬底厚度、电阻率、少子寿命对IBC太阳电池量子效率、短路电流、开路电压、转换效率的影响.结果表明:晶硅衬底少子寿命是影响IBC太阳电池性能的最主要因素.少子寿命越高,电池转换效率越高.当晶硅衬底电阻率为2Ω·cm,少子寿命为500 μs时,最优的衬底厚度范围为60~65μm,IBC太阳电池转换效率约为22.5%.利用高质量晶硅材料制备IBC太阳电池时,可降低对衬底厚度的要求.当晶硅衬底厚度为150 μm、少子寿命为500μs时,最优衬底电阻率为0.3 Ω·cm,IBC太阳电池转换效率约为23.3%.少子寿命越低,IBC太阳电池最优的衬底电阻率越大.  相似文献   

4.
多晶硅太阳电池背表面刻蚀提升其性能的产线工艺研究   总被引:3,自引:2,他引:1  
对比研究了产线上多晶硅太阳电池背表面刻蚀对 其光电转换性能的影响。示范性实验结果表明:多晶硅太阳电池背表面刻蚀能够改善其短路 电流, 从而相应的光电转换效 率提升了约 0.1%。依据多晶硅太阳电池背表面刻蚀前后的扫描 电镜(SEM)形貌、背表面漫 反射光谱及完整电池片外量子效率的测试结果,改进的光电转换的原因可能源于背表面刻蚀 “镜面”化有利于太阳光子在背表面内反射和改进印刷Al浆与背表面覆盖接触。背表面刻蚀 与当前晶硅电池产线工艺兼容,能够提升电池片的光电转换效率,是一种可供选择的产线升 级工艺。  相似文献   

5.
通过提高发射区的方块电阻和优化发射区的磷杂质浓度纵向分布,制备了性能优良的单晶硅太阳电池。I-V测量分析表明:高表面活性磷杂质浓度浅结发射区太阳电池短路电流密度、开路电压和填充因子分别提高了0.32mA/cm2,1.19mV和0.22%,因此转换效率提高了0.22%。内量子效率分析表明:高表面活性磷杂质浓度浅结发射区太阳电池短路电流密度的提高是由于短波光谱响应增强了。SEM分析表明:高表面活性磷杂质浓度浅结发射区太阳电池在发射区硅表面沉积的Ag晶粒分布数量更多、一致性更好,从而更容易收集光生电流传输到Ag栅线,改善了太阳电池的性能。  相似文献   

6.
孟彦龙  贾锐 《半导体光电》2011,32(2):151-157
晶硅太阳电池的发展仍然以降低成本、提高效率为主题,围绕这一主题发展出来各种电池结构。文章概述了目前几种转化效率超过20%并且可实现低成本的电池结构,这些电池包括异质结本征薄层(HIT)电池、叉指状背接触(IBC)电池、金属绕通(MWT)电池及发射区绕通(EWT)电池。通过对这几种电池结构的利弊进行分析讨论,总结了各类电池制备所面临问题以及可能的解决方案,为今后低成本、高效率太阳电池的研究提供一些有益的借鉴。  相似文献   

7.
我们发展了一种变温光电测试方法,用这种方法可以测量类如MIS隧道二极管结构器件的势垒高度、表面态密度等。对浅结MINP太阳电池的表面势垒高度也可进行测量。太阳电池的各参数主要由能带结构和界面态来决定,浅结MINP太阳电池(其结深一般为0.2~0.3μm)的表面空间耗尽层宽度(一般为0.1~0.3μm)与结深基本上相同。使  相似文献   

8.
N型背发射极晶体硅太阳电池模拟研究   总被引:1,自引:0,他引:1  
N型晶体太阳电池由于少子寿命高、光致衰减低、弱光响应好等优点,近年来在高效率低成本太阳电池领域一直备受关注。利用PC1D模拟,对N型背发射极晶体硅太阳电池进行了分析。结果表明,背发射极掺杂浓度、结深、背表面复合速率、前表面掺杂浓度及复合速率都对电池转换效率有较大影响,尤其是电池前表面与背表面复合速率对电池性能的影响最为明显,而电池前表面场掺杂深度则对电池性能影响较小。对于前表面复合来说,当前表面复合速率小于1×103cm/s时,电池性能受表面复合速率变化的影响很小;但复合速率超过1×103cm/s后,电池转换效率快速下降。背表面复合对电池效率影响则更明显,当背表面复合速率超过1×104cm/s后,电池转换效率急剧下降,在背表面复合速率增大到1×106cm/s时,电池效率下降到不足5%,而在电池背表面复合速度较小时(10~103cm/s)则可获得较高的转换效率。  相似文献   

9.
采用VHF-PECVD技术制备了系列微晶硅太阳电池.综合测试结果表明:硅烷浓度、热阱温度和前电极都对微晶硅太阳电池的性能有影响.在湿法腐蚀的ZnO衬底上制备的电池的效率比在ZnO/SnO2复合膜上制备的电池的效率高1.5%.在优化了沉积条件后,制备出效率达6.7%的微晶硅太阳电池(Jsc=18.8mA/cm2,Voc=0.526V,FF=0.68),电池的结构是glass/ZnO/p(μc-Si:H)/i(μc-Si:H)/(a-Si:H)/Al,没有ZnO背反射电极.  相似文献   

10.
为了得到优化的扩散工艺,通过改变扩散时间来改变Ⅱ类单晶硅片电池发射区的掺杂浓度和结深,研究了扩散时间对太阳电池性能的影响。通过太阳电池单片测试仪(XJCM-9)测试电池性能。得到了实验条件下优化的扩散工艺,此工艺既考虑了短路电流,又兼顾到开路电压。最优扩散工艺参数为:扩散温度850℃,主扩时间和再分布时间分别为40 min和15 min。此时电池的开路电压、短路电流密度、填充因子和转换效率分别为657 mV3、3.57 mA/cm2、74.36%和16.4%。优化扩散工艺制备的电池效率较原扩散工艺电池提高了约0.3%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号