首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
研究了铸态和固溶态下Mg-2.5Nd-1Cd-0.6Zr-0.4Zn镁合金的力学性能及阻尼行为.结果表明,固溶处理提高了合金抗拉强度、伸长率.室温下,铸态和固溶态合金的应变无关阻尼性能相当.该合金其应变相关阻尼随应变振幅的增大而增大,且固溶态的阻尼明显高于铸态的.合金的阻尼行为可采用Granato-Lucke位错阻尼理论解释.  相似文献   

2.
对ZA27合金进行365℃/3 h的固溶化处理,研究90℃时效对其拉伸性能及阻尼性能的影响。结果表明,固溶态ZA27合金经过90℃、6 h时效后的组织主要由α相和η相层片组织组成,另有少量粒状组织。固溶态合金的拉伸强度和阻尼性能均较低,伸长率较高。时效使合金拉伸强度和阻尼性能先提高后下降;使延伸率先降低后提高。时效6 h后ZA27合金的拉伸强度为401 MPa,伸长率为6.6%,阻尼性能为3.0×10^-3。  相似文献   

3.
采用光学显微镜、X射线衍射仪、显微硬度计、拉伸试验以及动态热机械分析仪等研究了固溶处理对ZK系(ZK21,ZK40,ZK60)镁合金组织、力学及阻尼性能的影响。结果表明:经固溶处理后,ZK系合金的晶粒尺寸略有长大,第二相溶解、晶格畸变增加。晶界处脆性相的溶解产生的固溶强化效应导致固溶态合金的抗拉强度和显微硬度明显高于铸态。固溶处理后合金的与应变振幅无关阻尼下降、与应变振幅相关阻尼上升,且临界应变振幅明显增大。同一应变振幅下固溶态合金阻尼性能低于铸态;第二临界应变振幅(εcr2)增大使固溶态ZK系合金可以在更大应变振幅范围下使用。ZK系镁合金上述阻尼性能的变化可以用Granato-Lücke理论和塑性阻尼理论来解释。   相似文献   

4.
采用扫描电镜(SEM)、X射线衍射(XRD)和力学性能测试等手段研究了固溶处理对ZA27合金组织和性能的影响。在300~380℃范围,合金经不同温度固溶处理1 h,水淬后进行相同的时效(160℃×8 h)处理。分析了在不同温度固溶处理的淬火态和时效态合金的显微组织及力学性能。结果表明,在365℃固溶处理能够使溶质原子充分溶入基体,时效析出相数量多、尺寸小、分布均匀,时效强化效果最好。ZA27合金的优选固溶工艺为365℃×1 h。  相似文献   

5.
ZA27合金250℃时效时间对阻尼性能的影响   总被引:5,自引:0,他引:5  
研究了淬火态ZA2 7合金在 2 50℃下时效不同时间后的阻尼性能。结果表明 ,ZA2 7合金时效0 5h后 ,组织由细小层片状α相和 η相组成。随时效时间延长 ,相组成和相成分不变 ,但层片厚度和层片间距加大 ,层片长度先增加后缩短 ,组织不断粗化。时效 4h后 ,组织趋于稳定。与淬火态相比 ,时效使合金的阻尼性能提高 ,时效 4h后合金阻尼达到稳定值。其中室温下 32 0Hz时的阻尼为 1 2× 1 0 -3 ,0 1Hz时的阻尼为 6 2 1× 1 0 -3 。与铸态合金相比 ,时效使合金阻尼降低。研究发现 ,ZA2 7合金的阻尼随温度的升高单调增大 ,并与频率相关。当温度较高时 ,随着频率增大 ,阻尼值减小  相似文献   

6.
对铸态ZL401合金进行了低温人工时效处理,利用低频内耗测试技术研究了合金的阻尼性能及实模量与应变振幅、频率和温度的关系,并与铸态合金进行了对比。发现合金阻尼与应变振幅及应变频率相关,随温度的提高而增大,且在低温和高温时合金阻尼与频率的关系出现了相反的变化。ZL401合金振动过程中实模量的亏损随频率的降低和温度的升高而增大。认为ZL401合金的阻尼行为是界面阻尼和位错阻尼二者效应叠加的结果,室温阻尼主要归功于位错阻尼,而高温阻尼主要归功于界面阻尼。  相似文献   

7.
采用光学显微镜、扫描电镜、动态热分析仪和X射线衍射仪研究了固溶时效处理对Mg-4Zn-0.3Zr合金显微组织和阻尼性能的影响。结果表明,铸态合金晶粒尺寸约121μm,晶界粗大且有MgZn、MgZn2和Mg7Zn3相分布;固溶处理后,晶界处的MgZn、MgZn2和Mg7Zn3相基本溶入基体;时效处理后,晶界处有少量的颗粒状MgZn和MgZn2相析出。在低应变振幅区,铸态合金阻尼性能最好,在高应变振幅区,固溶态阻尼性能最好,固溶+时效态合金阻尼曲线的斜率最大;3种状态合金在低温区的阻尼峰均由晶界阻尼峰和位错阻尼峰叠加构成,固溶态和固溶+时效态合金在高温区的阻尼峰为弛豫型阻尼峰。  相似文献   

8.
基于人工神经网络(ANN),建立了ZA35合金热处理工艺对阻尼性能影响的人工神经网络模型,预测了固溶时效处理后ZA35合金的阻尼性能。模型输入参数为固溶时间、固溶温度、时效时间和时效温度,输出参数为ZA35合金的内耗值。结果表明:该模型可以预测ZA35合金在不同热处理工艺参数下的阻尼性能,也可以优化热处理工艺参数。预测的最大相对误差为13.54%,拟合率为0.982,最终确定ZA35合金阻尼性能最佳的工艺参数是340℃×5 h固溶+150℃×8 h时效处理。  相似文献   

9.
ZA27-4%Si合金的阻尼性能及阻尼机理   总被引:7,自引:0,他引:7  
利用低频内耗测试技术研究了ZA27-4%Si合金的阻尼性能, 分析了合金的阻尼机理. 结果表明 ZA27-4%Si合金阻尼随频率增大而减小, 随温度升高而增大, 阻尼不随应变振幅的变化而变化ZA27-4%Si合金室温阻尼为5.83×10-3, 与ZA27合金阻尼相当ZA27-4%Si合金的阻尼是由合金内部的晶界和相界面滑动、位错振动以及各相的热膨胀系数和弹性模量间差造成的微塑性变形共同造成的. 硅合金化的ZA27合金具有良好耐磨减摩性能和减振性能.  相似文献   

10.
研究了后处理对激光选区熔化(Selective Laser Melting, SLM)成型MnCu阻尼合金的微观组织演变及阻尼性能的影响。结果表明,打印态MnCu合金形成了单一γ固溶体并具有良好的阻尼性能;打印态MnCu合金直接经435℃时效2.5 h空冷后微观形貌无明显变化。然而,此工艺处理导致扫描轨迹交界处微裂纹增加和孪晶组织减少,因此合金阻尼性能下降;打印态MnCu合金经885℃固溶处理1 h随炉冷却再经435℃时效2.5 h空冷后阻尼性能明显提升,当应变振幅达到0.1%时tanδ接近0.05,这是由于时效过程中Mn偏析使得合金晶格畸变程度增大。然而,延长时效时间至5 h后,α-Mn含量增多,恶化了合金的阻尼性能。  相似文献   

11.
In as-welded state, each region of 2219 aluminum alloy TIG-welded joint shows diff erent microstructure and microhardness due to the diff erent welding heat cycles and the resulting evolution of second phases. After the post-weld heat treatment, both the amount and the size of the eutectic structure or θ phases decreased. Correspondingly, both the Cu content in α-Al matrix and the microhardness increased to a similar level in each region of the joint, and the tensile strength of the entire joint was greatly improved. Post-weld heat treatment played the role of solid solution strengthening and aging strengthening. After the post-weld heat treatment, the weld performance became similar to other regions, but weld reinforcements lost their reinforcing eff ect on the weld and their existence was more of an adverse eff ect. The joint without weld reinforcements after the post-weld heat treatment had the optimal tensile properties, and the specimens randomly crack in the weld zone.  相似文献   

12.
After nearly two years' tense construction, the first phase of industrialized base of Shenyang Research Institute of Foundry (SRIF), located at the Tiexi Casting and Forging Industrial Park in the west of Tiexi District, has now been completed and formally put into operation.  相似文献   

13.
Institute of Process Engineering, Chinese Academy of Sciences, China, has proposed a method for oxidative leaching of chromite with potassium hydroxide. Understanding the mechanism of chromite decomposition, especially in the potassium hydroxide fusion, is important for the optimization of the operating parameters of the oxidative leaching process. A traditional thermodynamic method is proposed and the thermal decomposition and the reaction decomposition during the oxidative leaching of chromite with KOH and oxygen is discussed, which suggests that chromite is mainly destroyed by reactions with KOH and oxygen. Meanwhile, equilibrium of the main reactions of the above process was calculated at different temperatures and oxygen partial pressures. The stable zones of productions, namely, K2CrO4 and Fe2O3, increase with the decrease of temperature, which indicates that higher temperature is not beneficial to thermodynamic reactions. In addition, a comparison of the general alkali methods is carried out, and it is concluded that the KOH leaching process is thermodynamically superior to the conventional chromate production process.  相似文献   

14.
The effect of isochronal heat treatments for 1h on variation of damping, hardness and microstructural change of the magnesium wrought alloy AZ61 was investigated. Damping and hardness behaviour could be attributed to the evolution of precipitation process. The influence of precipitation on damping behaviour was explained in the framework of the dislocation string model of Granato and Lücke.  相似文献   

15.
The Lanthanum-doped bismuth ferrite–lead titanate compositions of 0.5(Bi LaxFe1-xO3)–0.5(Pb Ti O3)(x = 0.05,0.10,0.15,0.20)(BLxF1-x-PT) were prepared by mixed oxide method.Structural characterization was performed by X-ray diffraction and shows a tetragonal structure at room temperature.The lattice parameter c/a ratio decreases with increasing of La(x = 0.05–0.20) concentration of the composites.The effect of charge carrier/ion hopping mechanism,conductivity,relaxation process and impedance parameters was studied using an impedance analyzer in a wide frequency range(102–106Hz) at different temperatures.The nature of Nyquist plot confirms the presence of bulk effects only,and non-Debye type of relaxation processes occurs in the composites.The electrical modulus exhibits an important role of the hopping mechanism in the electrical transport process of the materials.The ac conductivity and dc conductivity of the materials were studied,and the activation energy found to be 0.81,0.77,0.76 and 0.74 e V for all compositions of x = 0.05–0.20 at different temperatures(200–300 °C).  相似文献   

16.
The orientation relationships(ORs)between the martensite and the retained austenite in low-and medium-carbon steels after quenching–partitioning–tempering process were studied in this work.The ORs in the studied steels are identified by selected-area electron diffraction(SAED)as either K–S or N–W ORs.Meanwhile,the ORs were also studied based on numerical fitting of electron backscatter diffraction data method suggested by Miyamoto.The simulated K–S and N–W ORs in the low-index directions generally do not well coincide with the experimental pole figure,which may be attributed to both the orientation spread from the ideal variant orientations and high symmetry of the low-index directions.However,the simulated results coincide well with experimental pole figures in the high-index directions{123}_(bcc).A modified method with simplicity based on Miyamoto’s work was proposed.The results indicate that the ORs determined by modified method are similar to those determined by Miyamoto’method,that is,the OR is near K–S OR for the low-carbon Q–P–T steel,and with the increase of carbon content,the OR is closer to N–W OR in medium-carbon Q–P–T steel.  相似文献   

17.
On the basis of the single-particle framework, a new theory on inclusion growth in metallurgical melts is developed to study the kinetics of inclusion growth on account of reaction and collision. The studies show that the early growth of inclusion depends on reaction growth and Brawnian motion collision, and where the former is decisive, the late growth depends on turbulence collision and Stokes' collision, and where the former is dominant; collision growth is very quick during the smelting process, lessened in the refining process, but nearly negligible in the continuous casting process.  相似文献   

18.
The motion of melt droplets in spray degassing process was analyzed theoretically. The height of the treatment tank in spray degassing process could be determined by the results of theoretical calculation of motion of melt droplets. To know whether the melt droplets would solidify during spraying process, the balance temperature of melt droplets was also theoretically analyzed. Then proof experiments for theoretical results about temperature of melt droplets were carried. In comparison, the experimental results were nearly similar to the calculation results.  相似文献   

19.
This work was to reveal the residual stress profile in electron beam welded Ti-6Al-4V alloy plates(50 mm thick) by using finite element and contour measurement methods.A three-dimensional finite element model of 50-mmthick titanium component was proposed,in which a column–cone combined heat source model was used to simulate the temperature field and a thermo-elastic–plastic model to analyze residual stress in a weld joint based on ABAQUS software.Considering the uncertainty of welding simulation,the computation was calibrated by experimental data of contour measurement method.Both test and simulated results show that residual stresses on the surface and inside the weld zone are significantly different and present a narrow and large gradient feature in the weld joint.The peak tensile stress exceeds the yield strength of base materials inside weld,which are distinctly different from residual stress of the thin Ti-6Al-4V alloy plates presented in references before.  相似文献   

20.
Silicon carbide nanoparticle-reinforced nickel-based composites(Ni–Si CNP),with a Si CNPcontent ranged from1 to 3.5 wt%,were prepared using mechanical alloying and spark plasma sintering.In addition,unreinforced pure nickel samples were also prepared for comparative purposes.To characterize the microstructural properties of both the unreinforced pure nickel and the Ni–Si CNPcomposites transmission electron microscopy(TEM) was used,while their mechanical behavior was investigated using the Vickers pyramid method for hardness measurements and a universal tensile testing machine for tensile tests.TEM results showed an array of dislocation lines decorated in the sintered pure nickel sample,whereas,for the Ni–Si CNPcomposites,the presence of nano-dispersed Si CNPand twinning crystals was observed.These homogeneously distributed Si CNPwere found located either within the matrix,between twins or on grain boundaries.For the Ni–Si CNPcomposites,coerced coarsening of the Si CNPassembly occurred with increasing Si CNPcontent.Furthermore,the grain sizes of the Ni–Si CNPcomposites were much finer than that of the unreinforced pure nickel,which was considered to be due to the composite ball milling process.In all cases,the Ni–Si CNPcomposites showed higher strengths and hardness values than the unreinforced pure nickel,likely due to a combination of dispersion strengthening(Orowan effects) and particle strengthening(Hall–Petch effects).For the Ni–Si CNPcomposites,the strength increased initially and then decreased as a function of Si CNPcontent,whereas their elongation percentages decreased linearly.Compared to all materials tested,the Ni–Si CNPcomposite containing 1.5% Si C was found more superior considering both their strength and plastic properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号