首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nanocrystalline Al−Mg coatings were produced using the cold gas dynamic-spraying technique. Unsieved Al−Mg powder of average nanocrystalline grain size in the range of 10 to 30 nm and with a particle size distribution from 10 to >100 μm was used as the feedstock powder. The resulting coatings were evaluated using scanning electron microscopy (SEM), transmission electron microscopy, as well as microhardness and nanoindentation measurements. Coating observations suggest that the wide particle size distribution of the feedstock powder has a detrimental effect on the coating quality but that it can be successfully mitigated by optimizing the spraying parameters. Nanohardness values close to 3.6 GPa were observed in both the feedstock powder and coatings, suggesting the absence of cold-working hardening effects during the process. The effects of the substrate surface roughness and thickness on coating quality were investigated. The deposited mass measurements performed on the coatings showed that the effect of using different grit sizes for the substrate preparation is limited to small changes in the deposition efficiency of only the first few layers of deposited material. The SEM observation showed that the substrate surface roughness has no significant effect on the macrostructures and microstructures of the coating. The ability to use the cold gas dynamic spraying process to produce coatings on thin parts without noticeable substrate damage and with the same quality as coatings produced on thicker substrates was demonstrated in this work. The original version of this paper was published in the CD ROM Thermal Spray Connects: Explore Its Surfacing Potential, International Thermal Spray Conference, sponsored by DVS, ASM International, and IIW International Institute of Welding, Basel, Switzerland, May 2–4, 2005, DVS-Verlag GmbH, Düsseldorf, Germany.  相似文献   

2.
This work describes recent progress in cold-spray processing of conventional and nanocrystalline 2618 (Al−Cu−Mg−Fe−Ni) aluminum alloy containing scandium (Sc). As-atomized and cryomilled 2618+Sc aluminum powder were sprayed onto aluminum substrates. The mechanical behavior of the powders and the coatings were studied using micro-and nanoindentation techniques, and the microstructure was analyzed using scanning and transmission electron microscopy (SEM and TEM). The influence of powder microstructure, morphology, and behavior during deposition on the coating properties was analyzed. This work shows that Al−Cu−Mg−Fe−Ni−Sc coatings with a nanocrystalline grain structure can be successfully produced by the cold-spray process. Inspection of the scientific literature suggests that this is the first time a hardness value of 181 HV has been reported for this specific alloy. The original version of this paper was published in the CD ROM Thermal Spray Connects: Explore Its Surfacing Potential, International Thermal Spray Conference, sponsored by DVS, ASM International, and IIW International Institute of Welding, Basel, Switzerland, May 2–4, 2005, DVS-Verlag GmbH, Düsseldorf, Germany.  相似文献   

3.
It is difficult to deposit dense intermetallic compound coatings by cold spraying directly using the compound feedstock powders due to their intrinsic low-temperature brittleness. A method to prepare intermetallic compound coatings in-situ employing cold spraying was developed using a metastable alloy powder assisted with post-heat treatment. In this study, a nanostructured Fe/Al alloy powder was prepared by ball-milling process. The cold-sprayed Fe/Al alloy coating was evolved in-situ to intermetallic compound coating through a post-heat treatment. The microstructural evolution of the Fe-40Al powder during mechanical alloying and the effect of the post-heat treatment on the microstructure of the cold-sprayed Fe(Al) coating were characterized by optical microscopy, scanning electron microscopy, transmission electron microscopy (TEM), and x-ray diffraction analysis. The results showed that the milled Fe-40Al powder exhibits lamellar microstructure. The microstructure of the as-sprayed Fe(Al) coating depends significantly on that of the as-milled powder. The heat-treatment temperature significantly influences the in-situ evolution of the intermetallic compound. The heat treatment at a temperature of 500 °C results in the complete transformation of Fe(Al) solid solution to FeAl intermetallic compound. This article is an invited paper selected from presentations at the 2007 International Thermal Spray Conference and has been expanded from the original presentation. It is simultaneously published in Global Coating Solutions, Proceedings of the 2007 International Thermal Spray Conference, Beijing, China, May 14-16, 2007, Basil R. Marple, Margaret M. Hyland, Yuk-Chiu Lau, Chang-Jiu Li, Rogerio S. Lima, and Ghislain Montavon, Ed., ASM International, Materials Park, OH, 2007.  相似文献   

4.
The transition behavior of the splat pattern of nickel particles sprayed onto a flat substrate was investigated. Auger analysis and scanning electron microscopy observation of splats on a gold-coated substrate were examined. It was confirmed that splashing was not formed by flowing on the substrate surface from the impingement center to the periphery, but by jetting away from central disk. The etched splat surface revealed that the bottom part of the central disk of the splat solidified quite rapidly just after impingement onto the cold substrate. The splash pattern was found only in a direction perpendicular to the scratch pattern on the substrate. Therefore, it was confirmed that splashing was caused by some deterrent to the liquid flow, for example, due to effects such as poor wettability at the flow tip or initial rapid solidification of the splat. The drastic change of the splat pattern near the transition temperature seems to occur when the We number of the liquid flow coincides with some critical value. This paper originally appeared in Thermal Spray: Meeting the Challenges of the 21st Century; Proceedings of the 15th International Thermal Spray Conference, C. Coddet, Ed., ASM International, Materials Park, OH, 1998. This proceedings paper has been extensively reviewed according to the editorial policy of the Journal of Thermal Spray Technology.  相似文献   

5.
The corrosion characteristics of two Ni-Cr-Mo-B alloy powders sprayed by the high-velocity oxy-fuel (HVOF) process have been studied using potentiodynamic and potentiostatic corrosion analysis in 0.5 M H2SO4. The deposits were also microstructurally characterized using x-ray diffraction (XRD), scanning electron microscopy (SEM) (utilizing both secondary electron and backscattered electron modes), and transmission electron microscopy (TEM). Results from the microstructural examination of the two alloys have revealed a predominantly amorphous/nanocrystalline face centered cubic (fcc) matrix containing submicron boride precipitates as well as regions of martensitically transformed laths. Apparent recrystallization of the amorphous matrix has also been observed in the form of cellular crystals with a fcc structure. The oxide stringers observed at splat boundaries were found to be columnar grained α-Cr2O3, though regions of the spinel oxide NiCr2O4 with a globular morphology were also observed. The coatings of the two alloys exhibited comparable resistance to corrosion in 0.5 M H2SO4, as revealed by potentiodynamic tests. They both had rest potentials approximately equal to −300 mV saturated calomel electrode (SCE) and passive region current densities of ∼1 mA/cm2. Microstructural examination of samples tested potentiostatically revealed the prevalence of degradation at splat boundaries, especially those where significant oxidation of the deposit occurred. This paper originally appeared in Thermal Spray: Meeting the Challenges of the 21st Century; Proceedings of the 15th International Thermal Spray Conference, C. Coddet, Ed., ASM International, Materials Park, OH, 1998. This proceedings paper has been extensively reviewed according to the editorial policy of the Journal of Thermal Spray Technology.  相似文献   

6.
When describing the cold-spray process, one of the most widely used concepts is the critical velocity. Current models predicting critical velocities take the temperature of the sprayed particles explicitly into account, but not the surface temperature (substrate or already deposited layers) on which the particle impacts. This surface temperature is expected to play an important role, since the deformation process leading to particle bonding and coating formation takes place both on the particle and the substrate side. The aim of this work is to investigate the effect of the substrate temperature on the coating formation process. Experiments were performed using aluminum, zinc, and tin powders as coating materials. These materials have a rather large difference in critical velocities that gives the possibility to cover a broad range of deposition velocity to critical velocity ratio using commercial low-pressure cold-spray system. The sample surface was heated and the temperature was varied from room temperature to a high fraction of the melting point of the coating material for all three materials. The change in temperature of the substrate during the deposition process was measured by means of a high speed IR camera. The coating formation was investigated as a function of (1) the measured surface temperature of the substrate during deposition, (2) the gun transverse speed, and (3) the particle velocity. Both single particle impact samples and thick coatings were produced and characterized. Both the particle-substrate and interparticle bonding were evaluated by scanning electron microscopy (SEM) and confocal microscopy. This article is an invited paper selected from presentations at the 2007 International Thermal Spray Conference and has been expanded from the original presentation. It is simultaneously published in Global Coating Solutions, Proceedings of the 2007 International Thermal Spray Conference, Beijing, China, May 14-16, 2007, Basil R. Marple, Margaret M. Hyland, Yuk-Chiu Lau, Chang-Jiu Li, Rogerio S. Lima, and Ghislain Montavon, Ed., ASM International, Materials Park, OH, 2007.  相似文献   

7.
The deposition behavior of sprayed individual metallic particles on the substrate surface in the cold spray process was fundamentally investigated. As a preliminary experiment, pure copper (Cu) particles were sprayed on mirror-polished stainless steel and aluminum (Al) alloy substrate surfaces. Process parameters that changed systematically were particle diameter, working gas, gas pressure, gas temperature, and substrate temperature, and the effect of these parameters on the flattening or adhesive behavior of an individual particle was precisely investigated. Deposition ratio on the substrate surface was also evaluated using these parameters. From the results obtained, it was quite noticeable that the higher substrate temperature brought about a higher deposition rate of Cu particles, even under the condition where particles were kept at room temperature. This tendency was promoted more effectively using helium instead of air or nitrogen as a working gas. Both higher velocity and temperature of the particles sprayed are the necessary conditions for the higher deposition ratio in the cold spraying. However, instead of particle heating, substrate heating may bring about the equivalent effect for particle deposition. This article is an invited paper selected from presentations at the 2007 International Thermal Spray Conference and has been expanded from the original presentation. It is simultaneously published in Global Coating Solutions, Proceedings of the 2007 International Thermal Spray Conference, Beijing, China, May 14-16, 2007, Basil R. Marple, Margaret M. Hyland, Yuk-Chiu Lau, Chang-Jiu Li, Rogerio S. Lima, and Ghislain Montavon, Ed., ASM International, Materials Park, OH, 2007.  相似文献   

8.
Aluminum powder of 99.7 wt.% purity and in the nominal particle size range of −75+15 μm has been sprayed onto a range of substrates by cold gas dynamic spraying (cold spraying) with helium, at room temperature, as the accelerating gas. The substrates examined include metals with a range of hardness, polymers, and ceramics. The substrate surfaces had low roughness (R a < 0.1 μm) before deposition of aluminum in an attempt to separate effects of mechanical bonding from other forms of bonding, such as chemical or metallurgical bonding. The cross-sectional area of a single track of aluminum sprayed onto the substrate was taken as a measure of the ease of initiation of deposition, assuming that once a coating had begun to deposit onto a substrate, its growth would occur at a constant rate regardless of substrate type. It has been shown that initiation of deposition depends critically upon substrate type. For metals where initiation was not easy, small aluminum particles were deposited preferentially to large ones (due to their higher impact velocities); these may have acted as an interlayer to promote further building of the coating. A number of phenomena have been observed following spraying onto various substrates, such as substrate melting, substrate and particle deformation, and evidence for the formation of a metal-jet (akin to that seen in explosive welding). Such phenomena have been related to the processes occurring during impact of the particles on the substrate. Generally, initiation of aluminum deposition was poor for nonmetallic materials (where no metallic bonding between the particle and substrate was possible) and for very soft metals (in the case of tin, melting of the substrate was observed). Metallic substrates harder than the aluminum particles generally promoted deposition, although deposition onto aluminum alloy was difficult due to the presence of a tenacious oxide layer. Initiation was seen to be rapid on hard metallic substrates, even when deformation of the substrate was not visible. The original version of this article was published as part of the ASM Proceedings, Thermal Spray 2003: Advancing the Sciences and Applying the Technology, International Thermal Spray Conference (Orlando, FL), May 5–8, 2003, Basil R. Marple and Christian Moreau, Ed., ASM International, 2003.  相似文献   

9.
Dense and thick pure aluminum coatings were deposited on AZ91D-T4 magnesium substrates using the cold spray process. Heat treatments of the as-sprayed samples were carried out at 400 °C using different holding times. The feedstock powder, substrate and coating microstructures were examined using optical microscopy (OM), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) as well as Vickers microhardness analysis. The results demonstrate that aluminum coatings having dense and uniform microstructure can be deposited successfully using a relatively large feedstock powder. It has been identified that the intermetallics Al3Mg2 (γ phase) and Mg17Al12 (β phase) were formed at the coating/substrate interface during heat treatment. The growth rate of these intermetallics follows the parabolic law and the γ phase has a higher growth rate than the β phase. The thickness of the Mg17Al12 and Al3Mg2 intermetallic layers has reached 83 μm and 149 μm, respectively. This result is almost 45% higher than what has been reported in the literature so far. This is attributed to the fact that T4 instead of as cast Mg alloy was used as substrate. In the T4 state, the Al concentration in the Mg matrix is higher, and thus intermetallic growth is faster as less enrichment is required to reach the critical level for intermetallic formation in the substrate. The AZ91D-T4 magnesium substrate contains single α phase with fine clusters/GP-zones which is considered beneficial for the intermetallic formation as well as the intimate contact between the coating/substrate interface and the deformed particles within the coating.  相似文献   

10.
In this study, Ni-chrome alloy particles were thermally sprayed onto a variety of substrate materials using the high-velocity air fuel (HVAF) technique. Although the various substrate materials were sprayed using identical powder material and thermal spray conditions, the type and variation of splat morphologies were strongly dependent on the substrate material. Predominantly solid splats are observed penetrating deeply into softer substrates, such as aluminum, whereas molten splats were observed on harder substrates, which resisted particle penetration. The observed correlation between molten splats and substrate hardness could be due a dependency of deposition efficiencies of solid and molten splats on the substrate material. However, it was found that conversion of particle kinetic energy into plastic deformation and heat, dependent on substrate hardness, can make a significant contribution towards explaining the observed behavior. This article was originally published inBuilding on 100 Years of Success: Proceedings of the 2006 International Thermal Spray Conference (Seattle, WA), May 15–18, 2006, B.R. Marple, M.M. Hyland, Y.-Ch. Lau, R.S. Lima, and J. Voyer, Ed., ASM International, Materials Park, OH, 2006.  相似文献   

11.
Investigation of Al-Al2O3 Cold Spray Coating Formation and Properties   总被引:3,自引:0,他引:3  
Coating build-up mechanisms and properties of cold-sprayed aluminum-alumina cermets were investigated using two spherical aluminum powders having average diameters of 36 and 81 μm. Those powders were blended with alumina at several concentrations. Coatings were produced using a commercial low-pressure cold spray system. Powders and coatings were characterized by electronic microscopy and microhardness measurements. In-flight particle velocities were monitored for all powders. The deposition efficiency was measured for all experimental conditions. Coating performance and properties were investigated by performing bond strength test, abrasion test, and corrosion tests, namely, salt spray and alternated immersion in saltwater tests. These coating properties were correlated to the alumina fraction either in the starting powder or in the coating. This article is an invited paper selected from presentations at the 2007 International Thermal Spray Conference and has been expanded from the original presentation. It is simultaneously published in Global Coating Solutions, Proceedings of the 2007 International Thermal Spray Conference, Beijing, China, May 14-16, 2007, Basil R. Marple, Margaret M. Hyland, Yuk-Chiu Lau, Chang-Jiu Li, Rogerio S. Lima, and Ghislain Montavon, Ed., ASM International, Materials Park, OH, 2007.  相似文献   

12.
The curling up of the edges of splats of molten metal deposited on a cold substrate was investigated both experimentally and numerically. An analytical model, based on mismatch of thermal expansion between the splat and substrate, was developed to calculate the deformation of splats after curling up. The curling-up angle was measured from both millimeter-sized splats of aluminum alloy and bismuth and plasma-sprayed nickel particles. The curling-up angles were predicted using both the analytical model and a numerical code and were found to agree reasonably well with experimental measurements. This article was originally published inBuilding on 100 Years of Success, Proceedings of the 2006 International Thermal Spray Conference (Seattle, WA), May 15–18, 2006, B.R. Marple, M.M. Hyland, Y.-Ch. Lau, R.S. Lima, and J.Voyer, Ed., ASM International, Materials Park, OH, 2006.  相似文献   

13.
High-velocity oxyfuel (HVOF) sprayed polyimide/WC-Co functionally graded (FGM) coatings with flame-sprayed WC-Co topcoats have been investigated as solutions to improve the solid-particle erosion and oxidation resistance of polymer matrix composites (PMCs) in the gas flow path of advanced turbine engines. Porosity, coating thickness, and volume fraction of the WC-Co phase retained in the graded coating architecture were determined using standard metallographic techniques and computer image analysis. The adhesive bond strength of three different types of coatings was evaluated according to ASTM D 4541. Adhesive/cohesive strengths of the FGM coating were measured and compared with those of pure polyimide and polyimide/WC-Co composite coatings and also related to the tensile strength of the uncoated PMC substrate perpendicular to the thickness. The FGM coatings exhibited lower adhesive bond strengths (∼6.2 MPa) than pure polyimide coatings (∼8.4 MPa), and in all cases these values were lower than the tensile strength (∼17.6 MPa) of the reference uncoated PMC substrate. The nature and locus of the failures were characterized according to the percent adhesive and/or cohesive failure, and the interfaces tested and layers involved were analyzed by scanning electron microscopy. The original version of this paper was published as part of the ASM Proceedings, Thermal Spray 2003: Advancing the Science and Applying the Technology, International Thermal Spray Conference (Orlando, FL), 5–8 May, 2003, Basil R. Marple and Christian Moreau, Eds., ASM International, 2003.  相似文献   

14.
Cold spray, a new member of the thermal spray process family, can be used to prepare dense, thick metal coatings. It has tremendous potential as a spray-forming process. However, it is well known that significant cold work occurs during the cold spray deposition process. This cold work results in hard coatings but relatively brittle bulk deposits. This work investigates the mechanical properties of cold-sprayed aluminum and the effect of annealing on those properties. Cold spray coatings approximately 1 cm thick were prepared using three different feedstock powders: Valimet H-10: Valimet H-20: and Brodmann Flomaster. ASTM E8 tensile specimens were machined from these coatings and tested using standard tensile testing procedures. Each material was tested in two conditions: as-sprayed; and after a 300°C, 22h air anneal. The as-sprayed material showed high ultimate strength and low ductility, with <1% elongation. The annealed samples showed a reduction in ultimate strength but a dramatic increase in ductility, with up to 10% elongation. The annealed samples exhibited mechanical properties that were similar to those of wrought 1100 H14 aluminum. Microstructural examination and fractography clearly showed a change in fracture mechanism between the as-sprayed and annealed materials. These results indicate good potential for cold spray as a bulkforming process. The original version of this paper was published in the CD ROM Thermal Spray Connects: Explore Its Surfacing Potential, International Thermal Spray Conference, sponsored by DVS, ASM International, and HW International Institute of Welding, Basel, Switzerland, May 2–4, 2005, DVS-Verlag GmbH, Düsseldorf, Germany.  相似文献   

15.
16.
Mild steel was coated by hot-dipping into molten pure aluminum, Al-0.5 Si, Al-2.5 Si, Al-5 Si and Al-10 Si (wt.%) baths at 700 °C for 180 seconds. The microstructure and phase constitution of the aluminide layers were characterized by means of optical microscope, scanning electron microscope with energy dispersive X-ray spectroscopy, X-ray diffraction and electron backscatter diffraction. Also, the thicknesses of the intermetallic layers and the metal losses of the steel substrate were measured to investigate the interaction between mild steel and aluminum baths. The results revealed that the additions of silicon to the aluminum baths caused Al7Fe2Si and Al2Fe3Si3 phases to form above the FeAl3 layer and in the Fe2Al5 layer, respectively. As the silicon content in the aluminum bath increased, the thickness of the intermetallic layer decreased, and the intermetallic layer/steel substrate interface transformed from an irregular morphology into a flat morphology. The decrease of the thickness of the intermetallic layer was principally attributed to the detachment of the Al7Fe2Si layer from the intermetallic layer into the aluminum bath. The flattened intermetallic layer/mild steel substrate interface was due to the formation of Al2Fe3Si3 precipitates in the Fe2Al5 layer by the serration-like steel substrate reacting with the Fe2Al5 layer containing solid-solute silicon.  相似文献   

17.
This study examined the interfacial reaction between electroless plated Ni−P/Au under bump metallization (UBM) and a eutectic Sn−3.5Ag solder using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The chemical and crystallographic analysis using TEM provided important information on the microstructural evolution at the interface. In this study, UBM was prepared by the electroless plating of Au (0.15 μm)/Ni-15 at %P (5 μm) on a bare Cu substrate and was then reacted with a Sn−3.5Ag eutectic solder at 260°C for various amounts of time to examine the different sequential stages of the interfacial reaction TEM analyses confirmed that beside the Ni3Sn4 layer, there were three more IMC layers at the interface: the Ni−Sn−P ternary layer, Ni3P layer, and the layer of phase mixture of the Ni3P and Ni2SnP ternary phases.  相似文献   

18.
Cold gas dynamic spray is a line-of-sight, high-rate material deposition process that uses a supersonic flow to accelerate small particles (micron-sized) above a material-dependent critical velocity. When the particles impact the substrate, they plastically deform and bond to form a coating. The objective of this research is to investigate the influence of the particle mass flow rate on the properties of coatings sprayed using the cold spray process. Varying the mass flow rate at which the feedstock particles are fed into the carrier gas stream can change the thickness of the coating. It was shown that poor coating quality (peeling) was not a result of flow saturation but, instead, the result of excessive particle bombardment per unit area on the substrate. By increasing the travel speed of the substrate, this can be overcome and well-bonded dense coatings can be achieved. It has also been shown that by heating the carrier gas flow poor coating quality is avoided. The original version of this paper was published in the CD ROM Thermal Spray Comects: Explore Its Surfacing Potential, Interational Thermal Spray Conference, sponsored by DVS, ASM International, and HW International Institute of Welding, Basel, Switzerland, May 2–4, 2005, DVS-Verlag GmBH, Düsseldorf. Germany.  相似文献   

19.
Characterization of Nanostructured WC-Co Deposited by Cold Spraying   总被引:1,自引:0,他引:1  
Nanostructured WC-Co coating was deposited by cold spraying using a nanostructured WC-12Co powder. The critical velocity for the particle to deposit was measured. The coating microstructure was characterized by X-ray diffraction analysis, scanning electron microscopy, and transmission electron microscopy. The coating hardness was tested using a Vickers hardness tester. The deposition behavior of single WC-Co particle was examined. WC particle size was measured for comparison of deposit properties to that of sintered bulk. The result shows that the nanostructured WC-Co coating can be successfully deposited by cold spraying using nanostructured powders. The coating exhibited a dense microstructure with full retention of the original nanostructure in the powder to the coating. The test of microhardness of the coating yielded a value of over 1820 Hv0.3, which is comparable to that of sintered nanostructured WC-Co. The deposition behavior of WC-Co powders as superhard cermet materials in cold spraying and powder structure effects is discussed. This article is an invited paper selected from presentations at the 2007 International Thermal Spray Conference and has been expanded from the original presentation. It is simultaneously published in Global Coating Solutions, Proceedings of the 2007 International Thermal Spray Conference, Beijing, China, May 14-16, 2007, Basil R. Marple, Margaret M. Hyland, Yuk-Chiu Lau, Chang-Jiu Li, Rogerio S. Lima, and Ghislain Montavon, Ed., ASM International, Materials Park, OH, 2007.  相似文献   

20.
A pure Al coating was deposited on AZ91D magnesium alloy through cold spray (CS) technique. The microstructure of the coating was characterized using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). It was found that the grain interfaces and subgrains formed close to the particle/particle boundaries. Electrochemical tests revealed that the cold sprayed pure Al coating had better pitting corrosion resistance than bulk pure Al with similar purity in neutral 3.5 wt.% NaCl solution. In addition, a mass-transfer step was found to be involved in the corrosion during 10 days immersion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号