首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 46 毫秒
1.
在利用主元分析(PCA)作统计监控时,没有主元与变量之间的生成模型,出现了检测指标量度不一致且只能离线故障识别等缺陷.而概率主元分析(PPCA)则在确定主元和误差的概率函数后,利用期望最大化(EM)算法建立了过程的生成模型,克服了PCA的不足.最后通过PCA和PPCA在化工分离过程监控中的应用比较,证明PPCA监控法方便、有效.  相似文献   

2.
基于稀疏核主元分析的在线非线性过程监控   总被引:1,自引:1,他引:1  
赵忠盖  刘飞 《化工学报》2008,59(7):1773-1777
核主元分析(KPCA)适合非线性过程的监控,但存在计算量大、实时性差等缺点。提出一种基于稀疏KPCA(SKPCA)的过程监控方法,先使用SKPCA对正常建模数据进行加权,少数权值大的数据基本能代表全部正常数据的信息,因此稀化了建模数据,然后根据稀化后的正常数据建立过程的KPCA模型,并提出监控指标,大大减少了计算量,提高了监控的实时性,最后以化工分离过程为对象,就KPCA与SKPCA的监控效果和实时性进行了详细的对比研究,结果表明了基于SKPCA监控方法的优越性。  相似文献   

3.
因子分析及其在过程监控中的应用   总被引:6,自引:5,他引:1  
赵忠盖  刘飞 《化工学报》2007,58(4):970-974
概率主元分析(PPCA)模型是因子分析(FA)模型的一种特殊形式,而主元分析(PCA)模型是PPCA模型的一种特例。PPCA和PCA已经在过程监控中得到了成功的应用,但是这两种方法的约束条件较多,而FA约束条件少,因此更能反映数据的本质特征。本文将FA引入工业过程监控,通过期望最大化(EM)算法建立FA模型,然后提出基于FA的监控指标,并讨论了因子个数的选择方案。在田纳西-伊斯曼(TE)过程中的应用结果以及与PCA、PPCA监控结果的对比表明了该方法的优越性。  相似文献   

4.
基于互信息的PCA方法及其在过程监测中的应用   总被引:9,自引:7,他引:2  
童楚东  史旭华 《化工学报》2015,66(10):4101-4106
主元分析(PCA)是一种经典的特征提取方法,已被广泛用于多变量统计过程监测,其算法的本质在于提取过程数据各变量之间的相关性。然而,传统PCA算法中定义的相关性矩阵局限于计算变量间的线性关系,无法衡量两个变量间相互依赖的强弱程度。为此,提出一种新的基于互信息的PCA方法(MIPCA)并将之应用于过程监测。与传统PCA所不同的是,MIPCA通过计算两两变量间的互信息来定义相关性,将原始相关性矩阵取而代之为互信息矩阵,并利用该互信息矩阵的特征向量实现对过程数据的特征提取。在此基础上,可以建立相应的统计监测模型。最后,通过实例验证MIPCA用于过程监测的可行性和有效性。  相似文献   

5.
步进MPCA及其在间歇过程监控中的应用   总被引:2,自引:0,他引:2  
针对多向主元分析法(MPCA)在间歇过程监控过程中需要预测过程未来输出的困难,提出了一种新的步进多向主元分析方法。该方法通过建立一系列的PCA模型,避免了对预估过程变量未来输出的需要,通过引入遗忘因子能够自然地处理多阶段间歇过程的情况。对于多阶段链霉素发酵过程的监控表明,相对于普通MPCA,步进MPCA能够更精确地对过程故障行为进行描述。  相似文献   

6.
PCA过程监测方法的故障检测行为分析   总被引:25,自引:4,他引:21  
王海清  宋执环  王慧 《化工学报》2002,53(3):297-301
通过分别导出T2 和SPE统计量均值与过程数据统计参数之间的关系 ,分析了影响主元分析 (PCA)检测行为的因素以及工况变化与故障在PCA下的不同被检测行为 ,利用双效蒸发过程的仿真监测验证了获得的结果 ,指出了通常关于PCA检测行为的一些不准确的结论  相似文献   

7.
改进PCA及其在过程监测与故障诊断中的应用   总被引:24,自引:4,他引:20  
王海清  宋执环  李平 《化工学报》2001,52(6):471-475
提出一种改进的主元分析 (PCA)方法 ,采用主元相关变量残差 (PVR)统计量代替通常的平方预测误差Q统计量 ,用于工业过程的监测与故障诊断。改进PCA避免了Q统计量的保守性 ,能够提供更详细的过程变化信息 ,从而有效识别正常工况改变与过程故障引起的T2 图变化。通过对双效蒸发过程的仿真监测 ,与普通PCA方法进行了比较 ,表明了改进PCA方法的有效性  相似文献   

8.
王倩  李宏光 《化工学报》2012,63(9):2948-2952
常规的PCA方法难于对发生模式变化的过程参数进行监控,为此,本文提出了一种基于奇异值识别递归PCA技术,用于解决多模式切换过程的监控问题。首先建立了在线奇异值识别算法,通过识别奇异值的变化可以准确判断过程发生模式切换的时间,然后采用递归PCA对过程的模式切换过渡阶段进行监控。将TE过程用于实例研究,验证了所提出方法的有效性。  相似文献   

9.
基于核PLS方法的非线性过程在线监控   总被引:6,自引:5,他引:1  
胡益  王丽  马贺贺  侍洪波 《化工学报》2011,62(9):2555-2561
针对过程监控数据的非线性特点,提出了一种基于核偏最小二乘(KPLS)的监控方法。KPLS方法是将原始输入数据通过核函数映射到高维特征空间,然后在高维特征空间再进行偏最小二乘(PLS)运算。与线性PLS相比,KPLS方法能充分利用样本空间信息,建立起输入输出变量之间的非线性关系。与其他非线性PLS方法不同,KPLS方法只需要进行线性运算,从而避免非线性优化问题。在对过程进行监控时,首先采用KPLS方法建立模型,得到得分向量,然后计算出T2和SPE统计量及其相应的控制限。Tennessee Eastman(TE)模型上的仿真研究结果表明,所提方法比线性PLS相似文献   

10.
基于PCA混合模型的多工况过程监控   总被引:7,自引:5,他引:2  
许仙珍  谢磊  王树青 《化工学报》2011,62(3):743-752
针对传统多元统计故障检测方法大多假设测量数据服从单一高斯分布的不足,提出了一种基于PCA(principal component analysis)混合模型的多工况过程监测方法。首先通过直接对混合模型的各高斯成分的协方差进行PCA降维变换,使得协方差阵对角化,既减少了运算量又避免了变量相关而导致的奇异性问题;同时采用BYY增量EM算法自动获取混合模型的最佳混合分量数目,避免了常规EM算法的不足。所得的混合模型,除包括均值、协方差和先验概率等参数外,还包括了PCA载荷阵,即对每个混合元建立了PCA模型。然后给出了统计量定义,实现对多工况过程的故障检测。数值例子和TE过程的应用表明,本文提出的方法无需过程先验知识,能自动获取工况数目、精确估计各个工况的统计特性,并更准确及时地检测出多工况过程的各种故障。  相似文献   

11.
    
The kernel principal component analysis (KPCA) method employs the first several kernel principal components (KPCs), which indicate the most variance information of normal observations for process monitoring, but may not reflect the fault information. In this study, sensitive kernel principal component analysis (SKPCA) is proposed to improve process monitoring performance, i.e., to deal with the discordance of T2 statistic and squared prediction error δSPE statistic and reduce missed detection rates. T2 statistic can be used to measure the variation directly along each KPC and analyze the detection performance as well as capture the most useful information in a process. With the calculation of the change rate of T2 statistic along each KPC, SKPCA selects the sensitive kernel principal components for process monitoring. A simulated simple system and Tennessee Eastman process are employed to demonstrate the efficiency of SKPCA on online monitoring. The results indicate that the monitoring performance is improved significantly.  相似文献   

12.
针对多向核主元分析法(MKPCA)在监控动态非线性和多模态间歇生产过程故障的不足,提出一种基于物理信息熵的多阶段多向核熵成分分析(multiple sub-stage multi-way kernel entropy component analysis,MSMKECA)的新方法用于故障监控。该方法首先通过核映射将数据从低维空间映射到高维特征空间;其次在高维特征空间依据熵结构信息计算每个时刻数据矩阵的相似度指标进行阶段划分,将间歇过程划分为各稳定阶段和各过渡阶段,并在过渡阶段用时变的协方差代替固定协方差;最后在划分的阶段里分别建立模型进行间歇过程监测解决间歇过程的动态非线性和多阶段特性;将所提出的算法应用于青霉素发酵仿真系统的在线监测,验证了该方法的有效性。  相似文献   

13.
卢春红  熊伟丽  顾晓峰 《化工学报》2014,65(12):4866-4874
针对一类非线性多模态的化工过程,提出一种基于概率核主元的混合模型(PKPCAM),并利用贝叶斯推理策略进行过程监控与故障诊断.在提出的模型中, 每个操作模态由一个局部化的概率核主元分量描述,从而构建的一系列分量对应了不同的操作模态.首先,将过程数据从原始的度量空间投影到高维特征空间;其次,在该特征空间建立概率主元混合模型,从概率角度刻画数据集的多个局部分量特征;最后,在提取的核主元分量内获得测试样本的后验概率,结合模态内的马氏距离贡献度,提出基于贝叶斯推理的全局概率指标进行故障检测,同时利用模态内变量的相对贡献度,基于全局贡献度指标进行故障诊断.利用TEP仿真平台,与基于k均值聚类的次级主元分析和核主元分析的方法进行了对比分析,验证了提出的贝叶斯推理的PKPCAM方法对非线性多模态过程进行故障检测与诊断的可行性和有效性.  相似文献   

14.
    
In this paper, a new non‐linear process monitoring method based on kernel independent component analysis (KICA) is developed. Its basic idea is to use KICA to extract some dominant independent components capturing non‐linearity from normal operating process data and to combine them with statistical process monitoring techniques. The proposed method is applied to the fault detection in the Tennessee Eastman process and is compared with PCA, modified ICA, and KPCA. The proposed approach effectively captures the non‐linear relationship in the process variables and showed superior fault detectability compared to other methods while attaining comparable false alarm rates.  相似文献   

15.
16.
主元空间中的故障重构方法研究   总被引:6,自引:2,他引:4  
王海清  蒋宁 《化工学报》2004,55(8):1291-1295
主元分析 (PCA)作为一种数据驱动的统计建模方法,在化工产品质量控制与故障诊断方面获得了广泛研究和应用.利用故障子空间的概念,研究了基于T2统计量的故障重构问题,获得了主元空间中的完全重构、部分重构,以及可重构性的条件.为进一步在主元空间中进行故障分离和识别提供了可能.通过对双效蒸发过程的仿真监测,对不同传感器的故障类型、幅值等重要信息进行重构和波形估计,证实了所获结果的有效性.  相似文献   

17.
一种基于改进MPCA的间歇过程监控与故障诊断方法   总被引:4,自引:3,他引:4  
齐咏生  王普  高学金  公彦杰 《化工学报》2009,60(11):2838-2846
针对基于不同展开方式的多向主元分析(MPCA)方法在线应用时各自存在的缺陷,提出一种改进的基于变量展开的MPCA方法,实现间歇过程的在线监控与故障诊断。该方法采用随时间更新的主元协方差代替固定的主元协方差进行T2统计量的计算,充分考虑了主元得分向量的动态特性;同时引入主元显著相关变量残差统计量,避免SPE统计量的保守性,且该统计量能提供更详细的过程变化信息,对正常工况改变或过程故障引起的T2监控图变化有一定的识别能力;最后提出一种随时间变化的贡献图计算方法用于在线故障诊断。该方法和MPCA方法的监控性能在一个青霉素发酵仿真系统上进行了比较。仿真结果表明:该方法具有较好的监控性能,能及时检测出过程存在的故障,且具有一定的故障识别和诊断能力。  相似文献   

18.
基于特征子空间的KPCA及其在故障检测与诊断中的应用   总被引:2,自引:0,他引:2  
付克昌  吴铁军 《化工学报》2006,57(11):2664-2669
针对标准KPCA(kernel principal component analysis)不适合大样本分析的缺点,提出了一种基于特征子空间的KPCA(FS_KPCA)及其故障检测与诊断方法,该方法通过构建具有较小维数的特征子空间上的正交基来简化核矩阵,从而降低KPCA的计算复杂性.与标准KPCA方法相比,FS_KPCA方法具有更高的计算效率且只需较小的计算机存储空间.通过非等温连续反应釜过程的故障检测与诊断的应用实例,说明了本算法的有效性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号