首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Abstract  Two Ag+ complexes [Ag(HL)2(PF6)] (1) and [(AgL) n  · n(CH2Cl2) · n(0.5H2O)] (2) (HL = 5-methyl-2-phenyl-4-[(2-o-tolylamino)-phenylmethylene]pyrazol-3(2H)-one) were synthesized and structurally characterized by EA analysis, IR spectra and X-ray crystallography. The result shows that two expected coordination modes (Modes I and III in Scheme 1) of the HL ligand, can be observed in its Ag+ complexes, while not in other transition metal ions (Ni2+, Co2+ or Cu2+) complexes whether deprotonation or not for the HL ligand. Graphical Abstract  Three possible coordination modes (Modes I, II or III in Scheme 1) of the selected HL (HL = 5-methyl-2-phenyl-4-[(2-o-tolylamino)-phenylmethylene]pyrazol-3(2H)-one) ligand, can be adopted, in which Modes I and III can be observed in its two Ag+ complexes [Ag(HL)2(PF6)](1) and [(AgL) n  · n(CH2Cl2) · n(0.5H2O)] (2), while Mode II just observed in its transition metal ions (Cu2+, Ni2+, or Co2+) complexes, resulting from the deprotonatd form of the HL ligand and the coordination characters of transition metal ions.   相似文献   

2.
Copper(II) polymer complexes of empirical formula [Cu(ligand)2X2] (where X = Cl, Br, I, NO3, and SO4) and [Cu(ligand)(CH3COO)2] have been prepared with poly(3-phenylacrylidine semicarbazone). All the polymer complexes prepared have been characterized by elemental analysis, magnetic moment, conductance, IR, electronic, 1H-NMR, and electronic paramagnetic resonance spectral studies. The polymer complexes [Cu(ligand)2X2] and [Cu(ligand) (CH3COO)2] may have tetragonal symmetry while the [Cu(ligand)2( SO4)2] may be five-coordinate trigonal bipyramidal in structure. All complexes exhibit normal magnetic moments corresponding to one unpaired electron except [Cu(ligand)(CH3COO)2] which shows a subnormal magnetic moment. EPR spectra of the polymer complexes have been studied with a view to assigning their stereochemistries. Various EPR parameters have been calculated. The g, A, G values for all the polymer complexes are consistent with a tetragonal 15 and trigonal bipyramidal 6 stereochemistry in the Cu(II) polymer complexes of homopolymer.  相似文献   

3.
《分离科学与技术》2012,47(17):2616-2625
As fundamental research for separation of platinum group metals (PGMs) from high level liquid waste (HLLW) by macroporous silica-based adsorbent, (MOTDGA-TOA)/SiO2-P adsorbent was prepared by impregnation of N,N′-dimethyl-N,N′-di-n-octyl-thiodiglycolamide (MOTDGA) and Tri-n-octylamine (TOA) into silica/polymer composite support (SiO2-P). The adsorption behavior of Ru(III), Rh(III), and Pd(II) in simulated HLLW onto the adsorbent were investigated by the batch method to obtain their corresponding equilibrium and kinetic data. The adsorbent showed strong adsorption for Pd(II) and the adsorption reached equilibrium within 2 hr. High distribution coefficient (K d) values for Pd(II) were obtained in 0.1–1 M HNO3 concentration. In addition, the use of both MOTDGA and TOA improved adsorption of Ru(III) and Rh(III) better than individual use of them. Especially, the K d value for Ru(III) towards (MOTDGA-TOA)/SiO2-P adsorbent was three times larger than that in the adsorption using only with MOTDGA or TOA as extractant. The adsorptions of Ru(III), Rh(III), and Pd(II) followed the Langmuir adsorption model, and were found to be controlled by the chemisorption mechanism.  相似文献   

4.
The influence of conditions (e.g., ratios of components, temperature etc.) on the reaction of Cu(OCOCH3)2·2H2O with polyethylene grafted-polyacrylic on the amount of the metal and the composition of the immobilized Cu(II) complexes was studied. The concentration dependence obeys the Langmuir law. Analysis of the data leads to an evaluation of the stability constant for the Cu(II) complexes (K=300 l/mole at 333 K). The constant corresponds to a Cu(II) fixation value, k=0.35 mole/l (22.22 mg Cu(II)/g). The multistage fixation mechanism for Cu(II) complex formation was demonstrated by the marked atom technique. Cu(II) is fixed by one carboxylate group (to 16 mol% of the supported Cu(II), K 1=16×10–2 mole/g) and by two carboxylate groups (K 2=2.54×10–3 mole/g) of the grafted ligands. The PE-gr-PAA–Cu(II) system mimics the situation-insoluble support-soluble functional polymer covering and realizes the advantages of both the soluble and the three-dimensional crosslinked polymer. Steady-state magnetic susceptibility measurements and ESR spectroscopy were used to study the distribution of cupric ion attached to a polyethylene-grafted poly(acrylic acid) support. The existence of three types of cupric ion complexes was demonstrated: (1) isolated complexes, (2) complexes bonded by dipole–dipole interactions, and (3) clusters with strong exchange interactions. The mean distances between the isolated ions (¯r22–15 Å) and between the dipole–bound complexes (¯r agreg7 Å) were estimated. The results obtained were compared to the data for other immobilized catalysts. Preliminary results on the fixation of bimetallic Cu(II) and Pd(II) complexes to the polymers as well as on their distributions were obtained.  相似文献   

5.
Dinuclear pyrazolato-bridged Pd(II) complexes Pd2L40 and Pd2L41 have been prepared by reacting Pd(Ac)2 and one equivalent of HL0 (3-phenyl-5-(2-pyridyl)pyrazole) or HL1 (3-phenyl-5-(6-methyl-(2-pyridyl))pyrazole. The new complexes have been characterised by elemental analyses, IR, 1H NMR and in the case of PdL14 by single crystal X-ray diffraction methods. This structure shows two palladium atoms bridged by two L1 ligands. The square-planar geometry of each Pd atom is completed by a bidentate chelating L1 ligand. The six-membered dipalladacycle formed by the two Pd atoms and the two bridging pyrazolato ligands adopts a distorted boat-like conformation.  相似文献   

6.
An investigation of the solid state conductivity of polymeric-Schiff bases derived from the condensation reaction of polyacrylamide and an aldehyde (4-methoxybenzaldehyde and 4-chlorbenzaldehyde) has been carried out and Co(II) and Ni(II) complexes have been prepared. Polymeric-Schiff bases and their metal complexes were characterized by molar conductance, magnetic susceptibility, and electronic and IR spectral studies. Conductivity measurements were carried out at 20 °C in dimethylformamide to determine the electrolytic behavior. The 1H-NMR and 13C-NMR spectra, elemental analysis, and viscosity average molecular mass (M v) of the polymeric-Schiff bases and their complexes were determined. All of the polymer–metal complexes showed high thermally stability. The DC conductivities of the solid samples were measured using a four-probe technique.  相似文献   

7.
New series of copper(II) complexes of the type [Cu(L)2] (L = L1–L5) comprising bidentate 2-(biphenylazo)phenol (HL1–HL4) and 1-(biphenylazo)naphthol (HL5) ligands have been synthesized. The composition of complexes and ligands (HL1–HL4) has been established by elemental analysis and spectral (FT–IR, UV–Vis, 1H NMR and EPR) methods. Molecular structures of copper complexes [Cu(L3)2] (3) and [Cu(L5)2] (5) were established by X-ray crystallography. These Copper(II) biphenylazo complexes exhibit a very good catalytic activity towards nitroaldol reaction of various aldehydes with nitromethane.  相似文献   

8.
《分离科学与技术》2012,47(10):1500-1509
To separate Pd(II), a macroporous silica-based soft-ligand 2,6-bis(5,6-di(iso-butyl)-1,2,4-triazine-3-yl)pyridine (BDIBTP) material, BDIBTP/SiO2-P, was synthesized by vacuum treatment. It was a multidentate chelating composite prepared by impregnation and immobilization of BDIBTP and 1-octanol molecules into the pores of the macroporous SiO2-P particles with a mean diameter of 50 µm. 1-Octanol was used to modify BDIBTP through intermolecular interaction force. The adsorption of some typical fission products Zr(IV), Pd(II), La(III), Y(III), Ru(III), Rh(III), and Mo(VI) contained in highly active liquid waste (HLW) onto the BDIBTP/ SiO2-P materials was investigated. It was carried out by examining the effects of contact time and the concentration of HNO3 in the range of 0.3 M?7.0 M. BDIBTP/SiO2-P showed excellent adsorption ability and high selectivity for Pd(II) over all of the tested metals. It was ascribed to the effective complexation of Pd(II) with BDIBTP/SiO2-P. Consideration of the complexation of BDIBTP for minor actinides MAs(III), the possibility and feasibility of effective partitioning of Pd(II) and MAs(III) simultaneously from a simulated HLW were discussed. A new concept process entitled MPS for the MA(III) and Pd(II) Separation has been proposed.  相似文献   

9.
Homogenous polymerization of methyl methacrylate using Pd(II)- and Ni(II)-based acetylide complexes as initiators has been investigated. M(PR'3)2(CCR)2 (M=Pd, Ni; R'=PPh3, Pn-Bu3; R=Ph, CH2OH, CH2OOCCH3, CH2OOCPh, CH2OOCPhOH-o) were found to be a novel type of effective initiators for the polymerization of methyl methacrylate. Among them, Pd(C CPh)2(PPh3)2 (PPP) shows the highest activity in the MMA polymerization and the PMMA obtained is a syndiotactic polymer with high number-average molecular weight (M n) of 14.1 × 104. Some features and kinetic behavior of MMA polymerization initiated by PPP were studied in detail. The polymerization reaction is first-order with respect to both [PPP] and [MMA]. Radical polymerization mechanism is proposed.  相似文献   

10.
Two new Cu(II) and Zn(II)-pyridine-2,3-dicarboxylate (pydc) complexes with 2-methylimidazole (2-Meim), [Cu(pydc)(2-Meim)3]·H2O (1) and {[Zn(μ-pydc)(H2O)(2-Meim)]·H2O}n (2) have been synthesized and characterized by elemental, spectral (IR and UV–Vis.) and thermal analyses. The molecular structures of mononuclear (1) and polynuclear (2) complexes have been determined by the single crystal X-ray diffraction. Compound 1 crystallizes in the triclinic P ? 1 space group, while compound 2 crystallizes in the monoclinic P21/c space group. The pyridine-2,3-dicarboxylate ligand acts in two different coordination modes; namely, bidentate-(N,O) for 1 and μ-tridentate-(N,O,O) for 2, the latter displaying a 1D polynuclear structure. The crystal packing of the complexes exhibit 3D supramolecular frameworks including channels by C–H···π, π···π, and N–H···O interactions. Water molecules occupy the channels by O–H···O hydrogen bonds.  相似文献   

11.
A novel azomethine oligomer of 2,3-bis[(2-hydroxyphenyl)methylene]diaminopyridine (HPMDAP) was first synthesized by oxidative polycondensation reaction using air and NaOCl as oxidative agents. Optimum reaction conditions for the oxidative polycondensation and the main parameters of the process were established. At optimum reaction conditions, the yield of the product was found to be 69%. Oligomeric complexes of 2,3-bis[(2-hydroxyphenyl)methylene]diaminopyridine with Cd(II), Co(II), Cu(II), Ni(II), Fe(II), Pb(II), Cr(III) and Zn(II) were successfully prepared. Structures of monomer, oligomer and some oligomer metal complexes obtained were confirmed by FT-IR, UV–vis, 1H- and 13C-NMR and elemental analysis. Characterization was carried out by TG-DTA, size exclusion chromatography (SEC), magnetic moment and solubility tests. The 1H- and 13C-NMR data showed that polymerization proceed by C–C coupling of ortho and para positions according to –OH group of HPMDAP. Elemental analysis of chelates suggests that the metal ligand ratio is about 1:2. Molecular weight distribution values of the products were determined by size exclusion chromatography (SEC). According to TG analyses, the carbonaceous residues of HPMDAP and OHPMDAP were found to be 34.94 and 29.36% at 1000 °C, respectively. Thermal analyses of Cd, Co, Cu, Ni, Fe, Pb, Cr and Zn oligomer–metal complexes were also investigated under N2 atmosphere between 15 and 1000 °C. Electrical conductivities of OHPMDAP and its metal complexes were also measured with four probe technique.  相似文献   

12.
The [2+3] cycloaddition of nitriles (RCN) with 2,2‐dimethyl‐3,4‐dihydro‐2H‐pyrrole 1‐oxide, in the presence of palladium dichloride (PdCl2) gives the corresponding 2,3‐dihydro[1.2.4]oxadiazole (Δ4‐1,2,4‐oxadiazoline) palladium(II) complexes 1 – 4 in good yields. However, the Pd(II)‐assisted reaction of pentafluorobenzonitrile with the same pyrroline N‐oxide gives a mixture of oxadiazoline 5 , ketoimine 6 and pyrrolylbenzamide‐ketoimine 7 Pd(II) complexes, which affords upon heating in refluxing acetone the unprecedented fused tricyclic ketoimine complex 8 as the exclusive product. Under heating, compounds 5 and 7 transform to 6 , the latter undergoing intramolecular cyclization by nucleophilic attack of the amino moiety to the ortho carbon of the pentafluorophenyl ring leading ultimately to 8 . The compounds were characterized by IR, 1H and 13C NMR, ESI+‐MS, elemental analyses and, in the cases of 3 , 6 , 7 and 8 , also by X‐ray diffraction analyses. The catalytic properties of the Pd complexes were evaluated in Suzuki–Miyaura cross‐coupling reactions, using supercritical carbon dioxide (scCO2) as a green solvent. Cross‐couplings of aryl halides with phenylboronic acid give the desired biaryl products in quantitative yields, in a short reaction time, for substrate‐to‐catalyst molar ratios as high as 4.0⋅104.  相似文献   

13.
The self-assembly of [M(L)]Cl2·2H2O (M = Ni2+ and Cu2+, L = 3,14-dimethyl-2,6,13,17-tetraazatricyclo[14,4,01.18,07.12]docosane) with sodium 1,2,4-benzenetricarboxylate (Na3btcb) and KNO3 generates the 1D hydrogen-bonded polymers with formulas [Ni(L)(H2btcb?)2] (1) and [Cu(L)(NO3)2] (2). These polymer complexes have been characterized by X-ray crystallography, spectroscopy and cyclic voltammetry. The crystal structure of 1 shows a distorted octahedral coordination geometry around the nickel(II) ion, with the four secondary amines of the macrocycle and two carboxylate oxygen atoms of the H2btcb? ligand in the trans position. In 2, the coordination environment around the central copper(II) ion reveals an axially elongated octahedron with four Cu–N bonds and two oxygen atoms of the nitrate ligand in the trans position. The cyclic voltammograms of the complexes undergo two one-electron waves corresponding to MII/MIII and MII/MI processes. The electronic spectra and electrochemical behavior of the complexes are significantly affected by the nature of the axial ligands.  相似文献   

14.
Two new nano-structured Hg(II) supramolecular complexes, [Hg(5,5′-di-t-but-bpy)(μ-Br)Br]2[Hg(5,5′-di-t-but-bpy)Br2](1) and [Hg(5,5′-di-t-but-bpy)I2] (2) were synthesized by the sonochemical method. The structures of 1 and 2 were characterized by elemental analysis, IR, 1H-NMR, and 13C-NMR spectroscopy and single crystal X-ray diffraction. Their thermal stabilities were studied by thermogravimetric and differential thermal analyses. Solid-state luminescent spectra of 1 and 2 indicate a fluorescent broad emission band between 304 and 404 nm with excitation at 284 nm. These nanostructured coordination polymers were characterized by scanning electron microscopy, elemental analysis, and IR spectroscopy.  相似文献   

15.
Organometallic ruthenium(II) complexes of general formula [(η6‐arene)Ru(curcuminato)Cl], with arene being piPrC6H4Me ( 1 ), C6H6 ( 2 ), and C6Me6 ( 3 ), were synthesized, characterized, and evaluated for their antitumor effects. Specifically, we explored their ability to regulate the proteasome, a validated pharmacological target in cancer treatment. Ruthenium complexes inhibited isolated proteasomes to various extents, with the biological activity of these complexes depending on the nature of the bound arene; in particular, [(η6‐arene)Ru(curcuminato)Cl] 2 suppressed proteasomal activities more potently than 1 , 3 , or free curcumin. Each complex also inhibited proteasomes in cultured colon cancer cells and consequently triggered apoptosis, with the [(η6‐benzene)Ru(curcuminato)Cl] complex 2 being the most active. The influence on the oxidative status of HCT116 cells and the DNA binding ability of the [(η6‐arene)Ru(curcuminato)Cl] complexes were studied. Complex 2 showed the highest antioxidant capacity; moreover, complexes 1 and 2 were shown to bind isolated DNA with higher affinity (up to threefold) than free curcumin. Collectively, our results demonstrate that the complexation of curcumin with ruthenium(II) is a promising starting point for the development of curcumin‐based anticancer drugs.  相似文献   

16.
The oxidative polycondensation and optimum reaction conditions of N-2-aminopyridinylsalicylaldimine using air oxygen, H2O2 and NaOCl were determined in an aqueous alkaline solution between 40–90°C. Oligo-N-2-aminopyridinylsalicylaldimine (OAPSA) was characterized by using 1H-NMR, FT-IR, UV-vis and elemental analysis. N-2-aminopyridinylsalicylaldimine was converted to oligomer by oxidizing in an aqueous alkaline medium. The number average molecular weight (M n), weight average molecular weight (M w) and polydispersity index (PDI) values were found to be 7487 gmol–1, 7901 gmol–1 and 1.06, respectively. According to these values, 70% of N-2-aminopyridinylsalicylaldimine turned into oligo-N-2-aminopyridinylsalicylaldimine. During the polycondensation reaction, a part of the azomethine (–CH=N–) groups oxidized to carboxylic (–COOH) group. Besides, the structure and properties of oligomer-metal complexes of oligo-N-2-aminopyridinyl salicylaldimine (OAPSA) with Cu (II), Ni (II), and Co (II) were studied by FT-IR, UV-vis DTA, TG and elemental analysis. Anti-microbial activities of the oligomer and its oligomer-metal complexes have been tested against C. albicans, L. monocytogenes, B. megaterium, E. coli, M. smegmatis, E. aeroginesa, P. fluorescen and B. jeoreseens. Also, according to the TG and DTA analyses, oligo-N-2-aminopyridinylsalicylaldimine and its oligomer-metal complexes were found to be stable thermo-oxidative decomposition. The weight loss of OAPSA found to be 20%, 50% and 98% at 350°C, 535°C and 1000°C, respectively.  相似文献   

17.
Two palladium(II) nitroaryl complexes trans-[bromo(p-nitrophenyl)bis(triphenylphosphine)palladium(II)] 1 and trans-[bromo(2,4-dinitrophenyl)bis(triphenylphosphine)palladium(II)] 2 have been synthesized. The complexes were characterized by FTIR and NMR (1H, 13C and 31P) spectroscopy and elemental analysis. The molecular structure of complex 2, as confirmed by X-ray crystallography, reveals that the Pd atom and its neighboring groups (two PPh3, Br and phenylene group) lie in a slightly distorted square plane. In the UV–Vis spectra of the complexes 1 and 2, the palladium to aryl charge transfer bands were observed. The emission peaks from the singlet excited states (S1  S0) were observed in the photoluminescence spectra of the complexes. The thermal stability of the complexes has been studied by thermal gravimetric analysis (TGA). TGA data showed that both complexes are thermally stable up to 200 °C, and complex 1 is more stable than 2. The catalytic efficiency of the new palladium(II) complexes was studied as demonstrated using the Sonogashira coupling reactions with good yields. The experimental results suggest that the Sonogashira coupling reactions can be performed at moderate temperature (50 °C) using these new palladium(II) complexes as catalysts.  相似文献   

18.
Tris(N-phenyldithiocarbamato) ruthenium(III) complexes, [Ru(L1)3] (1); tris(N-(4-methylphenyl)dithiocarbamato)) ruthenium(III), [Ru(L2)3] (2); and tris(N-(4-methoxyphenyl)dithiocarbamato)) ruthenium(III), [Ru(L3)3] (3) were synthesized and characterized by elemental analysis, thermogravimetric analysis, FTIR, UV–VIS and NMR spectroscopy. TGA analyses show major degradation of all complexes in the range 120–350°C, leading to the formation of residual weight corresponding to ruthenium (III) sulfides. The 1H-NMR spectra of the ligands and complexes are in agreement with the proposed structures. FTIR studies confirmed that the ligands coordinate the Ru3+ ion in a bidentate chelating mode. The complexes were thermolysed at 180°C to prepare hexadecylamine-capped Ru2S3 nanoparticles. Powder X-ray diffraction patterns revealed the formation of hexagonal-phase Ru2S3 nanoparticles with average crystallite sizes ranging from 8.3 to 9.5?nm. TEM images showed the crystalline clusters with shapes ranging from square to hexagonal, while SEM images elucidated that the particles were agglomerated. Energy-dispersive X-ray spectra confirmed the presents of Ru2S3 nanoparticles.  相似文献   

19.
A reasonable project was presented for the extraction and separation of Pt(IV), Pd(II), Ru(III), and Rh(III) from the mixed imidazolium-based ionic liquids (ILs) [C6mim]Cl, [C6mim][NTf2], and [C6mim][DDTC]. Pt(IV) was first separated from other three platinum group metals with a mixture of [C6mim]Cl and [C6mim][NTf2]. Then, separation of Pd(II) and Ru(III) from Rh(III) was realized by changing the concentration of [C6mim][DDTC]. Back-extraction of Pt(IV), Pd(II), and Ru(III) from loaded hydrophobic phase and the recovery of Rh(III) in aqueous phase were also investigated. Mechanisms between Pd(II)/Ru(III) and [C6mim][DDTC] were further explored using ultraviolet spectrophotometry (UV-Vis), infrared spectrophotometry (FTIR), the method of continuous variations, ab initio quantum chemical studies, and X-ray crystallographic analysis. The results afford more directions for extracting and separating metals by introducing devisable functionalized group into ILs.  相似文献   

20.
A series of new 5-aryl-2,2′-bipyridines and their (polyfluoro)salicylate complexes of Cu(II), Co(II) and Mn(II) were synthesized. Their antimicrobial activity was evaluated in vitro against six strains of Trichophytons, E. floccosum, M. canis, C. ablicans and Gram-negative bacteria N. gonorrhoeae. Among azo-ligands, Ph-bipy and Tol-bipy showed promising antifungal activity (minimum inhibitory concentration (MIC)<0.8–27 μM). Their antifungal action was found can be realized via binding Fe(III) ions. Tol-bipy suppressed growth of Gram-positive bacteria S. aureus, S. aureus MRSA and their monospecies biofilms (MIC 6–16 μM). Using molecular docking, the anti-staphylococcal action mechanism based on the inhibition of S. aureus DNA gyrase GyrB was proposed for the lead compounds. Among metal complexes, Cu(II) and Mn(II) complexes based on tetrafluorosalicylic acid and Tol-bipy or Ph-bipy had the high antifungal activity (MIC<0.24–32 μM). Mn(SalF4−2H)2(Tol-bipy)2] suppressed the growth of seven Candida strains at MIC 12–24 μM. [Cu(Sal−2H)(Ph-bipy)] and [Cu(SalF3−2H)(Ph-bipy)2] showed the promising anti-gonorrhoeae activity (MIC 4.2–5.2 μM). (Cu(SalFn−2H)(Tol-bipy)2], [Cu(SalF4−2H)(Ph-bipy)2] and [Cu(SalF3−2H)(Ph-bipy)2]) were found active against the bacteria of S. aureus, S. aureus MRSA and their biofilms (MIC 2.4–41.4 μM). The most active compounds were tested for toxicity in vitro against human embryonic kidney (HEK-293) cells and in vivo experiments with CD-1 mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号