首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Nd2Fe14B/C microparticles were prepared by a mechanical mixing technique using a weight ratio of 2:1. Paraffin-bonded Nd2Fe14B/C composites were fabricated using 40 wt% microparticles, and their electromagnetic wave absorption properties were studied and compared with those of the paraffin-bonded Nd2Fe14B composites in the 2-18 GHz frequency range and for 1-5 mm thickness. The Nd2Fe14B/C-paraffin composites exhibit dual dielectric resonance in complex relative permittivity (?r) and essentially flat response in complex relative permeability (μr) rather than showing an abrupt change in both ?r and μr as in the Nd2Fe14B-paraffin composites. The results are ascribed to the increased electrical resistivity in the Nd2Fe14B/C-paraffin composites and the protection on the magnetic properties of the Nd2Fe14B microparticles at 2-18 GHz by the presence of the C phase. Large reflection loss (RL) exceeding −10 dB and an optimal RL of −13.2 dB are achieved in the Nd2Fe14B/C-paraffin composites from 9.6 to 18 GHz at a thickness of 1.4-2.6 mm and at 18 GHz at a thickness of 1.4 mm, respectively.  相似文献   

2.
A facile direct precipitation method has been developed for the synthesis of bifunctional magnetic-luminescent nanocomposites with Fe3O4 nanoparticles as the core and YVO4:Eu3+ as the shell. Transmission electron microscopy (TEM) images revealed that the obtained bifunctional nanocomposites had a core-shell structure and a spherical morphology. The average size was ∼150 nm, and the thickness of the shell was ∼15 nm. The X-ray diffraction (XRD) patterns showed that a cubic spinel structure of Fe3O4 core and a tetragonal phase of YVO4 shell were obtained. Fourier transform infrared (FT-IR) spectra confirmed that the YVO4:Eu3+ had been successfully deposited on the surface of Fe3O4 nanoparticles. Photoluminescence (PL) spectra indicated that the nanocomposites displayed a strong red characteristic emission of Eu3+. Magnetic measurements showed that the obtained bifunctional nanocomposites exhibited superparamagnetic behavior at room temperature. Therefore, the bifunctional nanocomposites are expected to develop many potential applications in biomedical fields.  相似文献   

3.
The effective complex permeability of Ce2Fe17N3−δ particles/epoxy resin composites with various volume concentrations p were measured in the frequency range of 0.1-15 GHz. The intrinsic quasi-static permeability μ0,i of Ce2Fe17N3−δ particle was calculated by Bruggerman's (BG) effective medium theory. Meanwhile, the effective quasi-static permeability μ0,e of composites were calculated by the BG theory and modified Bruggerman's (MBG) effective medium theory, respectively. Through analyzing the experiment data, the effective shape factors of Ce2Fe17N3−δ composites were determined. The intrinsic natural resonance frequency of Ce2Fe17N3−δ was obtained using Landua-Lifshitz-Gilbert (LLG) equation. The minimum EM absorbing values with RL ≤ −30 dB are observed for all the volume concentrations.  相似文献   

4.
New type of Fe(Mn)/Mn7C3/graphite nanocapsules was prepared by a modified arc discharge technique in ethanol vapor, with Fe(Mn) solid solution nanoparticles as the core, Mn7C3 as the inner shell, and graphite as the outer shell. The Cole-Cole semicircle approach was adopted to explain the ternary dielectric resonance, due to a cooperative consequence of the core/shell/shell interfaces and the dielectric Mn7C3 and C shells. A remarkable increase in the anisotropy energy led to a shift in the natural resonance frequency to 6.6 GHz. Dielectric losses come from the ternary dielectric resonance while magnetic losses were from the magnetic natural resonance. An optimal reflection loss (RL) of −142.1 dB was observed at 12 GHz for 5.0 mm thickness layer. RL exceeding −10 dB was obtained at 6.6-18 GHz for 1.4 mm thickness, covering the whole X band (8-12 GHz), Ku band (12-18 GHz), and some of C band (6.6-8.0 GHz). RL exceeding −20 dB was found at 6-10.6 GHz for 2.2 mm thickness.  相似文献   

5.
Fe3O4 micro-spheres with nanoparticles close-packed architectures were synthesized via a simple chemical method using (NH4)2Fe(SO4)2·6H2O, hexamethylenetetramine, and NaF as reaction materials. This chemical synthesis took place in a vitreous jar under low temperature (90 °C) and atmospheric pressure. The morphology and structure of the as-synthesized products were characterized by field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), and Raman spectrum. Electrochemical properties of the as-synthesized Fe3O4 micro-spheres as anode electrode of lithium ion batteries were studied by conventional charge/discharge tests, which exhibit steady charge/discharge platforms at different current densities. The as-prepared Fe3O4 electrode shows high initial discharge capacity of 1166 and 1082 mAh g−1 at current density of 0.05 and 0.1 mA cm−2, respectively.  相似文献   

6.
Superparamagnetic Fe3O4 nanoparticles were synthesized via a modified coprecipitation method, and were characterized with X-ray diffraction (XRD), vibrating sample magnetometer (VSM), Zeta potential and FT-IR, respectively. The influences of different kinds of surfactants (sodium dodecyl benzene sulfonate, polyethyleneglycol, oleic acid and dextran), temperatures and pH values on the grain size and properties were also investigated. In this method, Fe3+ was used as the only Fe source and partially reduced to Fe2+ by the reducing agent with precise content. The following reaction between Fe3+, Fe2+ and hydroxide radical brought pure Fe3O4 nanoparticles. The tiny fresh nanoparticles were coated in situ with surfactant under the action of sonication. Comparing with uncoated sample, the mean grain size and saturation magnetization of coated Fe3O4 nanoparticles decrease from 18.4 nm to 5.9-9.0 nm, and from 63.89 emu g−1 to 52-58 emu g−1 respectively. When oleic was used as the surfactant, the mean grain size of Fe3O4 nanoparticles firstly decreases with the increase of reaction temperature, but when the temperature is exceed to 80 °C, the continuous increase of temperature resulted in larger nanoparticles. the grain size decreases gradually with the increasing of pH values, and it remains unchanged when the PH value is up to 11. The saturation magnetization of as-prepared Fe3O4 nanoparticles always decreases with the fall of grain size.  相似文献   

7.
Co3O4/graphene nanocomposite material was prepared by an in situ solution-based method under reflux conditions. In this reaction progress, Co2+ salts were converted to Co3O4 nanoparticles which were simultaneously inserted into the graphene layers, upon the reduction of graphite oxide to graphene. The prepared material consists of uniform Co3O4 nanoparticles (15-25 nm), which are well dispersed on the surfaces of graphene nanosheets. This has been confirmed through observations by field emission scanning electron microscopy, transmission electron microscopy and atomic force microscopy. The prepared composite material exhibits an initial reversible lithium storage capacity of 722 mAh g−1 in lithium-ion cells and a specific supercapacitance of 478 F g−1 in 2 M KOH electrolyte for supercapacitors, which were higher than that of the previously reported pure graphene nanosheets and Co3O4 nanoparticles. Co3O4/graphene nanocomposite material demonstrated an excellent electrochemical performance as an anode material for reversible lithium storage in lithium ion cells and as an electrode material in supercapacitors.  相似文献   

8.
dl-Thioctic acid (DLTA) coated magnetite (Fe3O4) NP's have been prepared by the co-precipitation of iron oxide in the presence of DLTA. The product identified as magnetite, which has an average crystallite size of 7 ± 2 nm as estimated from X-ray line profile fitting. Particle size was estimated as 11 ± 1 nm from TEM micrographs. FT-IR analysis showed that the binding of DLTA on the surface of iron oxide is through carboxyl group is bidentate. VSM analysis explained the super-paramagnetic nature of the nanocomposite. TG analysis showed that the 80% of the nanocomposite was DLTA and 10% was Fe3O4, respectively. The conductivity measurements displayed the magnetic transition at ∼60 °C for DLTA-Fe3O4 NPs. Analysis of the conductivities reveals the fact that the a.c. conductivity shows a frequency-dependent behavior while d.c. electrical conductivity is strongly temperature dependent and is classified into two regions over a limited temperature range of up to 120 °C. Toxicity was tested measured by LDH assay.  相似文献   

9.
Li Fang  Tingyang Dai  Yun Lu   《Synthetic Metals》2009,159(19-20):2101-2107
The preparation of free-standing electromagnetic composite films based on conductive polypyrrole (PPy) hydro-sponge and the Fe3O4 ferrofluid have been successfully accomplished via self-assembly in the presence of β-cyclodextrin sulfate and under static condition. Transmission electron microscope (TEM), scanning electron microscope (SEM) and X-ray diffraction (XRD) are used to study the morphology of the PPy-Fe3O4 composite. Structural characterizations by Fourier transform infrared (FTIR) and thermogravimetric analysis (TGA) have proved the interactions between Fe3O4 and PPy chains. As-prepared films possess high electrical conductivity, remarkable magnetic response as well as appropriate flexility. Both the conductivity and magnetization of the composite, the latter in particular, depend strongly on the Fe3O4 content and thus can be optimized by adjusting the relative content of Fe3O4 in the composite. The combination of both magnetic and conducting activities of the resulting composite makes it be a potential candidate as functional material in electromagnetic devices, such as magnetic-controlled switches.  相似文献   

10.
Nano-particles of homogeneous solid solution between TiO2 and Fe2O3 (up to 10 mol%) have been prepared by mechanochemical milling of TiO2 and yellow Fe2O3/red Fe2O3/precipitated Fe (OH)3 using a planetary ball mill. Such novel solid solution cannot be prepared by conventional co-precipitation technique. A preliminary investigation of photocatalytic activity of mixed oxide (TiO2/Fe2O3) on photo-oxidation of different organic dyes like Rhodamine B (RB), Methyl orange (MO), Thymol blue (TB) and Bromocresol green (BG) under visible light (300-W Xe lamp; λ > 420 nm) showed that TiO2 having 5 mol% of Fe2O3 (YFT1) is 3-5 times higher photoactive than that of P25 TiO2. The XRD result did not show the peaks assigned to the Fe components (for example Fe2O3, Fe3O4, FeO3, and Fe metal) on the external surface of the anatase structure in the Fe2O3/TiO2 attained through mechanochemical treatment. This meant that Fe components were well incorporated into the TiO2 anatase structure. The average crystallite size and particle size of YFT1 were found to be 12 nm and 30 ± 5 nm respectively measured from XRD and TEM conforming to nanodimensions. Together with the Fe component, they absorbed wavelength of above 387 nm. The band slightly shifted to the right without tail broadness, which was the UV absorption of Fe oxide in the Fe2O3/TiO2 particle attained through mechanochemical method. This meant that Fe components were well inserted into the framework of the TiO2 anatase structure. EPR and magnetic susceptibility show that Fe3+ is in low spin state corresponding to μB = 1.8 BM. The temperature variation of μB shows that Fe3+ is well separated from each other and does not have any antiferromagnetic or ferromagnetic interaction. The evidence of Fe3+ in TiO2/Fe2O3 alloy is also proved by a new method that is redox titration which is again support by the XPS spectrum.  相似文献   

11.
The core-shell structure cathode material Li(Ni0.8Co0.15Al0.05)0.8(Ni0.5Mn0.5)0.2O2 (LNCANMO) was synthesized via a co-precipitation method. Its applicability as a cathode material for lithium ion batteries was investigated. The core-shell particle consists of LiNi0.8Co0.15Al0.05O2 (LNCAO) as the core and a LiNi0.5Mn0.5O2 as the shell. The thickness of the LiNi0.5Mn0.5O2 layer is approximately 1.25 μm, as estimated by field emission scanning electron microscopy (FE-SEM). The cycling behavior between 2.8 and 4.3 V at a current rate of 18 mA g−1 shows a reversible capacity of about 195 mAh g−1 with little capacity loss after 50 cycles. High-rate capability testing shows that even at a rate of 5 C, a stable capacity of approximately 127 mAh g−1 is retained. In contrast, the capacity of LNCAO rapidly decreases in cyclic and high rate tests. The observed higher current rate capability and cycle stability of LNCANMO can be attributed to the lower impedance including charge transfer resistance and surface film resistance. Differential scanning calorimetry (DSC) indicates that LNCANMO had a much improved oxygen evolution onset temperature of approximately 251 °C, and a much lower level of exothermic-heat release compared to LNCAO. The improved thermal stability of the LNCANMO can be ascribed to the thermally stable outer shell of LiNi0.5Mn0.5O2, which suppresses oxygen release from the host lattice and not directly come into contact with the electrolyte solution. In particular, LNCANMO is shown to exhibit improved electrochemical performance and is a safe material for use as an electrode for lithium ion batteries.  相似文献   

12.
Microstructure and microwave dielectric properties of Mg-substituted ZnNb2O6-TiO2 microwave ceramics were investigated. Mg acted as a grain refining reagent and columbite phase stabilization reagent. With an increasing Mg content, the amount of ixiolite (Zn, Mg) TiNb2O8 decreased, and the amount of (Zn0.9Mg0.1)0.17Nb0.33Ti0.5O2 and columbite increased. ZnO-Nb2O5-1.75TiO2-5 mol.%MgO exhibited excellent dielectric properties (at 950 °C): ?r = 35.6, Q × f = 16,000 GHz (at 5.6 GHz) and τf = −10 ppm/°C. The material was applied successfully to make RF/microwaves ceramic capacitor, whose self-resonance frequency was 19 GHz at low capacitance of 0.13 pF.  相似文献   

13.
The effects of K2O and Li2O-doping (0.5, 0.75 and 1.5 mol%) of Fe2O3/Cr2O3 system on its surface and the catalytic properties were investigated. Pure and differently doped solids were calcined in air at 400-600 °C. The formula of the un-doped calcined solid was 0.85Fe2O3:0.15Cr2O3. The techniques employed were TGA, DTA, XRD, N2 adsorption at −196 °C and catalytic oxidation of CO oxidation by O2 at 200-300 °C. The results revealed that DTA curves of pure mixed solids consisted of one endothermic peak and two exothermic peaks. Pure and doped mixed solids calcined at 400 °C are amorphous in nature and turned to α-Fe2O3 upon heating at 500 and 600 °C. K2O and Li2O doping conducted at 500 or 600 °C modified the degree of crystallinity and crystallite size of all phases present which consisted of a mixture of nanocrystalline α- and γ-Fe2O3 together with K2FeO4 and LiFe5O8 phases. However, the heavily Li2O-doped sample consisted only of LiFe5O8 phase. The specific surface area of the system investigated decreased to an extent proportional to the amount of K2O and Li2O added. On the other hand, the catalytic activity was found to increase by increasing the amount of K2O and Li2O added. The maximum increase in the catalytic activity, expressed as the reaction rate constant (k) measured at 200 °C, attained 30.8% and 26.5% for K2O and Li2O doping, respectively. The doping process did not modify the activation energy of the catalyzed reaction but rather increased the concentration of the active sites without changing their energetic nature.  相似文献   

14.
AZ31/AZ91 hybrid alloy nanocomposite containing Al2O3 nanoparticle reinforcement was fabricated using solidification processing followed by hot extrusion. The nanocomposite exhibited similar grain size to the monolithic hybrid alloy, reasonable Al2O3 nanoparticle distribution, non-dominant (0 0 0 2) texture in the longitudinal direction, and 25% higher hardness than the monolithic hybrid alloy. Compared to the monolithic hybrid alloy (in tension), the nanocomposite synergistically exhibited higher 0.2%TYS, UTS, failure strain and work of fracture (WOF) (+12%, +7%, +99% and +108%, respectively). Compared to the monolithic hybrid alloy (in compression), the nanocomposite exhibited higher 0.2%CYS and UCS, and lower failure strain and WOF (+5%, +3%, −7% and −7%, respectively). The beneficial effects of Al2O3 nanoparticle addition on the enhancement of tensile and compressive properties of AZ31/AZ91 hybrid alloy are investigated in this paper.  相似文献   

15.
Poly(3-pyrrol-1-ylpropanoic acid) (PPyAA)-Fe3O4 nanocomposite was successfully synthesized by an in situ polymerization of 1-(2-carboxyethyl) pyrrole in the presence of synthesized Fe3O4 nanoparticles. Evaluation of structural, morphological, electrical and magnetic properties of the nanocomposite was performed by XRD, FT-IR, TEM, TGA, magnetization and conductivity measurements, respectively. XRD analysis reveals the inorganic phase as Fe3O4 and TGA shows about 90 wt% loading of Fe3O4 in the nanocomposite. FT-IR analysis indicates a successful conjugation of Fe3O4 particles with polypyrrole acetic acid. Magnetization measurements show that polypyrrole acetic acid coating decreases the saturation magnetization of Fe3O4 significantly. This reduction has been explained by the pinning of the surface spins by the possible adsorption of non-magnetic ions during the polymerization process. The conductivity and dielectric permittivity measurements strongly depend on the thermally activated polarization mechanism and thermal transition of PPyAA in the nanocomposite structure. Large value of dielectric permittivity (?′) of the nanocomposite at lower frequency is attributed to the predominance of species like Fe2+ ions and grain boundary defects (interfacial polarization).  相似文献   

16.
The effects of BaCu(B2O5) (BCB) additions on the sintering temperature and microwave dielectric properties of Li2MgTi3O8 ceramic have been investigated. The pure Li2MgTi3O8 ceramic shows a relative high sintering temperature (∼1000 °C) and good microwave dielectric properties as Q × f of 40,000 GHz, ?r of 27.2, τf of 2.6 ppm/°C. It was found that the addition of a small amount of BCB can effectively lower the sintering temperature of Li2MgTi3O8 ceramics from 1025 to 900 °C and induce no obvious degradation of the microwave dielectric properties. Typically, the 0.5 wt% BCB added Li2MgTi3O8 ceramic sintered at 900 °C for 2 h exhibited good microwave dielectric properties of Q × f = 36,200 GHz (f = 7.31 GHz), ?r = 26 and τf = −2 ppm/°C. Compatibility with Ag electrode indicates this material can be applied to low temperature-cofired ceramics (LTCC) devices.  相似文献   

17.
The microwave dielectric properties of La(Mg0.5−xNixSn0.5)O3 ceramics were examined with a view to their exploitation for mobile communication. The La(Mg0.5−xNixSn0.5)O3 ceramics were prepared by the conventional solid-state method at various sintering temperatures. The X-ray diffraction patterns of the La(Mg0.4Ni0.1Sn0.5)O3 ceramics revealed no significant variation of phase with sintering temperatures. Apparent density of 6.71 g/cm3, dielectric constant (?r) of 20.19, quality factor (Q × f) of 74,600 GHz, and temperature coefficient of resonant frequency (τf) of −85 ppm/°C were obtained for La(Mg0.4Ni0.1Sn0.5)O3 ceramics that were sintered at 1550 °C for 4 h.  相似文献   

18.
Urchin-like α-Fe2O3 and Fe3O4 nanostructures were prepared from the precursor urchin-like α-FeOOH under reducing atmosphere. The dependence of reduction temperature on their morphology, microstructure, and microwave electromagnetic and absorbing characteristics were systematically studied. It is found that the reduction temperature plays an important role in the microstructure and electromagnetic characteristics of the resulting products. In present study, the urchin-like α-Fe2O3 with dual absorption peaks can be formed at the relatively low temperature (e.g. 300 °C). Urchin-like Fe3O4 can be obtained just at 350-400 °C, which presents excellent microwave absorption property, with the minimum reflection loss of −29.96 dB and below −20 dB in 3.76-8.15 GHz corresponding to 3-4 mm thickness. The excellent microwave-absorption properties are a consequence of a proper electromagnetic matching and enhanced absorbing abilities resulting from the urchin-like shape and inverse spinel-type crystal structure.  相似文献   

19.
Mesoporous magnetite (Fe3O4) was successfully synthesized on a large scale by direct pyrolysis of ferric nitrate-EG (EG = ethylene glycol) gel in a one-end closed horizontal tube furnace in the air without using any template, additions, and carrier gas. The as-synthesized mesoporous Fe3O4 were characterized by powder X-ray diffraction (XRD), infrared spectra (IR), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), Brunauer-Emmett-Teller (BET), Barrett-Joyner-Halenda (BJH), and thermal gravimetric analysis (TGA). Results from TEM showed that the as-obtained Fe3O4 has mesoporous structure formed by the loose agglomeration of nanoparticles with diameter of about 6 nm, which was also confirmed by small-angle XRD and nitrogen adsorption analysis. Furthermore, vibrating sample magnetometer (VSM) measurements indicated that the saturated magnetization of the as-obtained mesoporous Fe3O4 was ferromagnetic with the saturation magnetization (Ms) and coercivity (Hc) of 46 emu/g and 136 Oe, respectively. In addition, a possible growth mechanism of mesoporous Fe3O4 was also discussed.  相似文献   

20.
The effects of BaCu(B2O5) additives on the sintering temperature and microwave dielectric properties of (Mg0.7Zn0.3)0.95Co0.05TiO3 ceramics were investigated. The (Mg0.7Zn0.3)0.95Co0.05TiO3 ceramics were not able to be sintered below 1000 °C. However, when BaCu(B2O5) were added, they were sintered below 1000 °C and had the good microwave dielectric properties. It was suggested that a liquid phase with the composition of BaCu(B2O5) was formed during the sintering and assisted the densification of the (Mg0.7Zn0.3)0.95Co0.05TiO3 ceramics at low temperature. BaCu(B2O5) powders were produced and used to reduce the sintering temperature of the (Mg0.7Zn0.3)0.95Co0.05TiO3 ceramics. Good microwave dielectric properties of Q × f = 35,000 GHz, ?r = 18.5.0 and τf = −51 ppm/°C were obtained for the (Mg0.7Zn0.3)0.95Co0.05TiO3 ceramics containing 7 wt.% mol% BaCu(B2O5) sintered at 950 °C for 4 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号