首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper focuses on the magnetic, structural and microstructural studies of amorphous/nanocrystalline Ni63Fe13Mo4Nb20 powders prepared by mechanical alloying. The ball-milling of Ni, Fe, Mo and Nb powders leads to alloying the element powders, the nanocrystalline and an amorphization matrix with Mo element up to 120 h followed by the strain and thermal-induced nucleation of a single nanocrystalline Ni-based phase from the amorphous matrix at 190 h. The results showed that the saturation magnetization decreases as a result of the electronic interactions between magnetic and non-magnetic elements and finally increases by the partial crystallization of the amorphous matrix. The coercive force increases as the milling time increases and finally decreases due to sub-grains formation.  相似文献   

2.
This paper reviews last findings about physical properties of Fe-Cr-Mn-N powders synthesized by mechanical alloying under nitrogen. Their thermal, magnetic, indentation, and grain growth behaviors and nitrogen distribution in their amorphous-nanocrystalline structure are regarded as a function of milling time. Particularly, the role of nitrogen in the aforementioned phenomena is reviewed in detail.  相似文献   

3.
Ternary Fe86NixMn14−x alloys, where x = 0, 2, 4, 6, 8, 10, 12, 14, 16 at.%, were prepared by the mechanical alloying (MA) of elemental powders in a high-energy planetary ball mill. X-ray diffraction analysis and Mössbauer spectroscopy were used to investigate the structure and phase composition of samples. Thermo-magnetic measurements were used to study the phase transformation temperatures. The MA results in the formation of bcc α-Fe and fcc γ-Fe based solid solutions, the hcp phase was not observed after MA. As-milled alloys were annealed with further cooling to ambient or liquid nitrogen temperatures. A significant decrease in martensitic points for the MA alloys was observed that was attributed to the nanocrystalline structure formation.  相似文献   

4.
The nanocrystalline NiAl intermetallic compound was synthesized by mechanical alloying of the elemental powders. The structural changes of powder particles during mechanical alloying were studied by X-ray diffractometery, scanning electron microscopy and microhardness measurements. The mechanical alloying resulted in the gradual formation of nanocrystalline NiAl with a grain size of 20 nm. It was found that NiAl phase develops by continuous diffusive reaction at Ni/Al layers interfaces. The NiAl compound exhibited high microhardness value of about 1035 Hv.  相似文献   

5.
In the present study high energy mechanical milling followed by cold temperature pressing consolidation has been used to obtain bulk nanocrystalline FeAl alloy. Fully dense disks with homogenous microstructure were obtained and bulk material show grain size of 40 nm. Thermal stability of the bulk material is studied by XRD and DSC techniques. Subsequent annealing at a temperature up to 480 °C for 2 h of the consolidated samples enabled supersaturated Fe(Al) solid solution to precipitate out fine metastable Al5Fe2, Al13Fe4 and Fe3Al intermetallic phases. Low temperature annealing is responsible for the relaxation of the disordered structure by removing defects initially introduced by severe plastic deformation. Microhardness shows an increase with grain size reduction, as expected from Hall-Petch relationship at least down to a grain size of 74 nm, then a decrease at smallest grain sizes. This could be an indication of some softening for finest nanocrystallites. The peak hardening for the bulk nanocrystalline FeAl is detected after isochronal ageing at 480 °C.  相似文献   

6.
In this paper we present the results of our efforts to synthesize the nanocrystalline MgB2 superconducting compound from elemental Mg and B powders by combination of controlled mechanical pre-alloying in a magneto-mill Uni-Ball-Mill 5 under shearing mode followed by electrical discharge (ED) assisted mechanical alloying (MA). There is no conclusive evidence of MgB2 formation in the Mg-2B mixture using crystalline boron after controlled mechanical alloying (CMA) under protective argon or helium atmosphere as well as subsequent ED assisted alloying. There seems to be some XRD evidence of the strongest (1 0 1) MgB2 peak presence in the Mg-2B mixture processed using both crystalline and amorphous boron after CMA under hydrogen as well as subsequent ED assisted alloying but this evidence is rather ambiguous. We postulate here that it is highly likely that a certain critical Mg nanograin size must be achieved before a successful reaction to form nanocrystalline MgB2 is going to be completed. Following recent report by Gümbel et al. [Appl. Phys. Lett. 80 (2002) 2725] this critical value can be roughly estimated at 15 nm or less. Calculations of the Mg nanograin size in the present work show that only three Mg-2B powders ball milled under hydrogen meet this critical nanograin size criterion for the Mg phase. However, a massive formation of the β-MgH2 hydride in these powders consumes the available Mg in the reaction with hydrogen which may leave inadequate concentration of Mg to form MgB2 even though the nanograin size of Mg is sufficiently refined, say below 15 nm.  相似文献   

7.
Phase formation during high energy ball milling of a ternary elemental powder mixture with a composition of Al–27.4at%Fe–28.7at%C and during low temperature heat treatment of the milled powder was studied. It was found that an amorphous phase formed during prolonged milling. During heating the shorter time milled powder, Al and Fe reacted first, forming the AlFe phase and then at a higher temperature, AlFe reacts with Fe and C, forming the AlFe3C0.5 phase. During heating the longer time milled powder which contains a substantial amount of amorphous phase, the amorphous phase partially crystallizes first, forming the AlFe and AlFe3C0.5 phases, and then AlFe reacts with the remaining amorphous phase, forming the AlFe3C0.5 phase. Overall, mechanical alloying of Al, Fe and C elemental phases enables formation of an amorphous phase, while low temperature heat treatment of mechanically milled powder facilitates formation of AlFe and AlFe3C0.5 phases.  相似文献   

8.
The influence of milling and subsequent annealing on the microstructural and magnetic properties of Fe90Co10 and Fe65Co35 alloys is investigated. After milling for 8 h a body-centred cubic nanostructured Fe–Co alloy forms with an average crystallite size of about 12 nm. The magnetization saturation (MS) increases 16% for Fe65Co35 and 5% for Fe90Co10 alloys by milling for 8 h. Subsequent annealing of Fe90Co10 and Fe65Co35 powders for 105 min at 550 °C improves the MS about 6 and 11%, respectively. Before annealing, the coercivity increases (up to 60 Oe) by milling for 3 h, followed by a reduction on milling for longer periods (45 h). At the initial stage of the heating, a sharp decrease in HC to 8–10 Oe occurs due to the relief of internal strain. Further heating leads to an increase in the coercivity (intermediate times) followed by a slight diminution on heating for final stage.  相似文献   

9.
The Fe60Co40 alloys were prepared by mechanical alloying of the Fe and Co powders using a high-energy ball mill. They were studied with respect to phase formation and magnetic properties using x-ray diffraction, scanning electron microscopy, and measurements of coercivity and remanence (B r). The evaluation of Fe lattice parameters during milling showed that formation of a body-centered cubic solid solution occurred by mechanical alloying after 12 h of milling. Intensive milling of Fe-Co powders results in a nonequilibrium microstructure characterized by grain refinement to a minimum of 10–13 nm and the introduction of internal strain up to 0.5%.  相似文献   

10.
Nanocrystalline NiAl intermetallic powders were synthesized by mechanical alloying (MA) in a planetary ball mill. Microstructural characterization was accomplished using X-ray diffraction (XRD) and transmission electron microscopy (TEM). The nanocrystalline NiAl powders were formed by a gradual exothermic reaction mechanism during MA. Prolonged milling resulted in partial martensitic transformation of B2-NiAl to tetragonal L10-NiAl structure. It is believed that the martensitic transformation is induced by mechanical stress during MA.  相似文献   

11.
Amorphous FeCrMnN alloys were synthesized by mechanical alloying (MA) of the elemental powder mixtures under a nitrogen gas atmosphere. The phase identification and structural properties, morphological evolution, thermal behavior and magnetic properties of the mechanically alloyed powders were evaluated by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and vibrating sample magnetometer (VSM), respectively. According to the results, at the low milling times the structure consists of the nanocrystalline ferrite and austenite phases. By progression of the MA process, the quantity and homogeneity of the amorphous phase increase. At sufficiently high milling times (>120 h), the XRD pattern becomes halo, indicating complete amorphization. The results also show that the amorphous powders exhibit a wide supercooled liquid region. The crystallization of the amorphous phase occurs during the heating cycle in the DSC equipment and the amorphous phase is transformed into the crystalline compounds containing ferrite, CrN and Cr2N. The magnetic studies reveal that the magnetic coercivity increases and then decreases. Also, the saturation magnetization decreases with the milling time and after the completion of the amorphization process (>120 h), the material shows a paramagnetic behavior. Although the magnetic behavior does not considerably change by heating the amorphous powders up to the crystallization temperature via DSC equipment, the material depicts a considerable saturation magnetization after the transformation of the amorphous phase to the nanocrystalline compounds.  相似文献   

12.
The nanocrystalline (Fe,Ti)3Al intermetallic compound was synthesized by mechanical alloying (MA) of elemental powder with composition Fe50Al25Ti25. The structural changes of powder particles during mechanical alloying were studied by X-ray diffractometry and microhardness measurements. Morphology and cross-sectional microstructure of powder particles were characterized by scanning electron microscopy. It was found that a Fe/Al/Ti layered structure was formed at the early stages of milling followed by the formation of Fe(Ti,Al) solid solution. This structure transformed to (Fe,Ti)3Al intermetallic compound at longer milling times. Upon heat treatment of (Fe,Ti)3Al phase the degree of DO3 ordering was increased. The (Fe,Ti)3Al compound exhibited high microhardness value of about 1050 Hv.  相似文献   

13.
Magnetic properties of Fe-Co-Mo-Cu-B alloy system with Co up to 26 at.% were investigated. After proper thermal treatment, the nanocrystalline grain remains tiny, the density hardly increases, but the room-temperature saturation attains 1.5 T mainly due to a high enough Curie temperature. The generally observed slant hysteresis loops point to ribbon surfaces, which stress the ribbon interior and induce a specific magnetoelastic contribution to hard-ribbon-axis magnetic anisotropy even after vacuum annealing. The effect does not come from cobalt but rather from the lack of silicon. Partial removal of the surfaces resulted in a decrease of the loop tilt.  相似文献   

14.
A high-energy ball milling technique using the mechanical alloying method has been employed for fabrication of glassy Co100−xTix (25≤x≤67) alloy powders at room temperature. The fabricated glassy alloys in the Co-rich (33≥x) side exhibit good soft magnetic properties. The binary glassy alloys for which the glass transition temperatures (Tg) have rather high temperatures (above 800 K), show large supercooled liquid regions before crystallization (ΔTx larger than 50 K). The reduced glass transition temperature (ratio between Tg and liquidus temperatures, Tl (Tg/Tl)) was found to be larger than 0.56. We have also performed post-annealing experiments on the mechanically deformed Co/Ti multilayered composite powders. The results show that annealing of the powders at 710 K leads to the formation of a glassy phase (thermally enhanced glass formation reaction), of which the heat of formation was measured directly. The similarity in the crystallization and magnetization behaviors between the two classes of as-annealed and as-mechanically alloyed glassy powders implies the formation of the same glass state.  相似文献   

15.
We report upon the chemical leaching and magnetic properties of nanoscale crystalline Al0.6(Co25Cu75)0.4 alloy powders produced by rod milling. X-Ray diffractometry (XRD), transmission electron microscopy, differential scanning calorimetry, vibrating sample magnetometry, and superconducting quantum interference device magnetometry were used to characterize the as-milled and leached specimens. After 400 h of milling, only the b.c.c. phase of the intermetallic compound γ-Al3.892Cu6.10808 was detected by XRD. After annealing the leached specimen at 600 °C for 1 h, the nanoscale crystalline phase was transformed into the f.c.c. Cu phase, and this was accompanied by a change in the magnetic properties. The peaks of the magnetization shifted towards lower temperature with increasing external field. The temperature behavior at Tf (45 K) for direct current (d.c.) magnetic susceptibility measurements was quite different for field cooling and zero-field cooling. After cooling the leached specimen from 800 °C, magnetization increased gradually.  相似文献   

16.
X-ray diffraction, Mössbauer spectroscopy and magnetization measurements were used to study the structure and some magnetic properties of Fe50Ge50 and Fe62Ge38 prepared by mechanical alloying from the elemental powders. In both cases in the early stages of milling the intermediate paramagnetic FeGe2 phase was formed. The mechanical alloying process of Fe50Ge50 resulted in the formation of the paramagnetic FeGe (B20) phase with an average crystallite size of about 15 nm. In the case of the Fe62Ge38, the ferromagnetic Fe5Ge3 (β) phase with a Curie temperature of about 430 K was obtained. The average crystallite size was about 9 nm. The average hyperfine magnetic field of about 16 T allowed it to determine that more than four germanium atoms exist in the nearest environment of the 57Fe isotopes in the Fe5Ge3 phase.  相似文献   

17.
In this work, microstructural evolution and amorphous phase formation in Co40Fe22Ta8B30 alloy produced by mechanical alloying (MA) of the elemental powder mixture under argon gas atmosphere was investigated. Milling time had a profound effect on the phase transformation, microstructure, morphological evolution and thermal behavior of the powders. These effects were studied by the X-ray powder diffraction (XRD) in reflection mode using Cu Kα and in transmission configuration using synchrotron radiation, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). The results showed that at the early stage of the milling, microstructure consisted of nanocrystalline bcc-(Fe, Co) phases and unreacted tantalum.Further milling, produced an amorphous phase, which became a dominant phase with a fraction of 96 wt% after 200 h milling. The DSC profile of 200 h milled powders demonstrated a huge and broad exothermic hump due to the structural relaxation, followed by a single exothermic peak, indicating the crystallization of the amorphous phase. Further XRD studies in transmission mode by synchrotron radiation revealed that the crystalline products were (Co, Fe)20.82Ta2.18B6, (Co, Fe)21 Ta2 B6, and (Co, Fe)3B2. The amorphization mechanisms were discussed in terms of severe grain refinement, atomic size effect, the concept of local topological instability and the heat of mixing of the reactants.  相似文献   

18.
FeSiAlCr alloy powders were prepared by mechanical alloying, the milling time were 20 h, 40 h, 60 h and 80~h, respectively. Powders morphology was studied by SEM. Microstructure of powders milled for various times were analyzed by XRD. The complex permittivity and complex permeability of four powders were tested in the frequency range from 0.5 to 18 GHz, and their microwave absorption properties were analyzed. It was found that the particle size of powders milled for 80~h was less than 2μm. Silicon and aluminum atoms were dissolved into the crystal lattice of iron, and chromium atoms can form alloy with iron atoms. The minimum peak value of reflectivity can reach to -11.3 dB at the frequency of 4.3 GHz for 80 h milling powders, and the other one was -6 dB at 16.5 GHz.  相似文献   

19.
Cu-Zr alloys have many applications in electrical and welding industries for their high strength and high electrical and thermal conductivities. These alloys are among age-hardenable alloys with capability of having nano-structure with high solute contents obtainable by the mechanical alloying process. In the present work, Cu-Zr alloys have been developed by the mechanical alloying process. Pure copper powders with different amounts of 1, 3 and 6 wt% of commercial pure zirconium powders were mixed. The powder mixtures were milled in a planetary ball mill for different milling times of 4, 12, 48 and 96 h. Ball mill velocity was 250 rpm and ball to powder weight ratio was 10:1. Ethanol was used as process control agent (PCA). The milling atmosphere was protected by argon gas to prevent the oxidation of powders. The milled powders were analysed by XRD technique and were also investigated by SEM observations. Lattice parameters, crystal sizes and internal strains were calculated using XRD data and Williamson-Hall equation. Results showed that the lattice parameter of copper increased with increasing milling time. The microstructure of milled powder particles became finer at longer milling time towards nano-scale structure. SEM observations showed that powder particles took plate-like shapes. Their average size increased initially and reached a maximum value then it decreased at longer milling times. Different zirconium contents had interesting effects on the behavior of powder mixtures during milling.  相似文献   

20.
Single phase WXAl50Mo50−X (X = 40, 30, 20 and 10) powders have been synthesized directly by mechanical alloying (MA). The structural evolutions during MA and subsequent as-milled powders by annealing at 1400 °C have been analyzed using X-ray diffraction (XRD). Different from the Mo50Al50 alloy, W40Al50Mo10 and W30Al50Mo20 alloys were stable at 1400 °C under vacuum. The results of high-pressure sintering indicated that the microhardnesses of two compositions, namely W40Al50Mo10 and W30Al50Mo20 alloys have higher values compared with W50Al50 alloy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号