首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ternary Fe86NixMn14−x alloys, where x = 0, 2, 4, 6, 8, 10, 12, 14, 16 at.%, were prepared by the mechanical alloying (MA) of elemental powders in a high-energy planetary ball mill. X-ray diffraction analysis and Mössbauer spectroscopy were used to investigate the structure and phase composition of samples. Thermo-magnetic measurements were used to study the phase transformation temperatures. The MA results in the formation of bcc α-Fe and fcc γ-Fe based solid solutions, the hcp phase was not observed after MA. As-milled alloys were annealed with further cooling to ambient or liquid nitrogen temperatures. A significant decrease in martensitic points for the MA alloys was observed that was attributed to the nanocrystalline structure formation.  相似文献   

2.
X-ray diffraction, Mössbauer spectroscopy and magnetization measurements were used to study the structure and some magnetic properties of Fe50Ge50 and Fe62Ge38 prepared by mechanical alloying from the elemental powders. In both cases in the early stages of milling the intermediate paramagnetic FeGe2 phase was formed. The mechanical alloying process of Fe50Ge50 resulted in the formation of the paramagnetic FeGe (B20) phase with an average crystallite size of about 15 nm. In the case of the Fe62Ge38, the ferromagnetic Fe5Ge3 (β) phase with a Curie temperature of about 430 K was obtained. The average crystallite size was about 9 nm. The average hyperfine magnetic field of about 16 T allowed it to determine that more than four germanium atoms exist in the nearest environment of the 57Fe isotopes in the Fe5Ge3 phase.  相似文献   

3.
Amorphous (Fe50Co50)62Nb8B30 powder mixture was prepared by mechanical alloying from elemental Fe, Co, B and Nb powders in a planetary ball mill under argon atmosphere. Structural, thermal and magnetic properties were performed on the milled powders by means of X-ray diffraction, differential scanning calorimetry and magnetic measurements. The amorphous state is reached after 125 h of milling. The excess enthalpy due to the high density of defects is released at temperature below 300 °C. Crystallisation and growth of crystal domains are the dominating processes at high temperatures. The saturation magnetisation decreases rapidly during the first 25 h of milling to about 15.24 A m2/kg and remains nearly constant on further milling. Coercivity, Hc, value of about 160 Oe is obtained after 125 h of milling.  相似文献   

4.
This paper reviews last findings about physical properties of Fe-Cr-Mn-N powders synthesized by mechanical alloying under nitrogen. Their thermal, magnetic, indentation, and grain growth behaviors and nitrogen distribution in their amorphous-nanocrystalline structure are regarded as a function of milling time. Particularly, the role of nitrogen in the aforementioned phenomena is reviewed in detail.  相似文献   

5.
    
This paper focuses on the magnetic, structural and microstructural studies of amorphous/nanocrystalline Ni63Fe13Mo4Nb20 powders prepared by mechanical alloying. The ball-milling of Ni, Fe, Mo and Nb powders leads to alloying the element powders, the nanocrystalline and an amorphization matrix with Mo element up to 120 h followed by the strain and thermal-induced nucleation of a single nanocrystalline Ni-based phase from the amorphous matrix at 190 h. The results showed that the saturation magnetization decreases as a result of the electronic interactions between magnetic and non-magnetic elements and finally increases by the partial crystallization of the amorphous matrix. The coercive force increases as the milling time increases and finally decreases due to sub-grains formation.  相似文献   

6.
The influence of milling and subsequent annealing on the microstructural and magnetic properties of Fe90Co10 and Fe65Co35 alloys is investigated. After milling for 8 h a body-centred cubic nanostructured Fe–Co alloy forms with an average crystallite size of about 12 nm. The magnetization saturation (MS) increases 16% for Fe65Co35 and 5% for Fe90Co10 alloys by milling for 8 h. Subsequent annealing of Fe90Co10 and Fe65Co35 powders for 105 min at 550 °C improves the MS about 6 and 11%, respectively. Before annealing, the coercivity increases (up to 60 Oe) by milling for 3 h, followed by a reduction on milling for longer periods (45 h). At the initial stage of the heating, a sharp decrease in HC to 8–10 Oe occurs due to the relief of internal strain. Further heating leads to an increase in the coercivity (intermediate times) followed by a slight diminution on heating for final stage.  相似文献   

7.
Ni75Nb12B13 alloys were synthesized by mechanical alloying (MA) of individual Ni, Nb and B components. X-ray investigation showed the formation of Ni (Nb, B) solid solution and amorphous phase at the intermediate stage of milling. Metastable phases formed by MA turned into Ni (Nb), Ni21Nb2B6 and Ni3Nb stable phases during heating up to 720 °C. The exothermal effects on DSC curves were caused with these processes. The disintegration of Ni (Nb, B) solid solution and crystallization of an amorphous phase resulted in the stable phases formation during the milling prolongation as well as after thermal treatment.  相似文献   

8.
The synthesis and characterization of Ti–xMg (x=4, 9, 12, 15, 21, 24 at%) alloys using mechanical alloying was investigated. A nanometer-sized Ti–24Mg alloy was produced. During mechanical alloying, the height of the XRD peaks of the Mg in the Ti–9Mg alloy decreased, and then disappeared, whereas the Ti XRD peaks broadened, and the grain size decreased with increasing milling time. The Mg firstly dissolved in the grain boundaries of the Ti, and then diffused into the Ti grain interiors. The grain boundaries played an important role in enhancing the solid solubility of Mg in Ti. With increasing Mg content the volume fraction of grain boundaries increased, and a decrease in grain size occurred after mechanical alloying for 48 h.  相似文献   

9.
FeCl2 and NiCl2 were used for synthesis of nanocrystalline spherical Fe–Ni alloy particles by ultrasonic spray pyrolysis and hydrogen reduction (USP-HR). Spherical ultrafine Fe–Ni particles were obtained by USP of aqueous solutions of iron–nickel chloride followed by thermal decomposition of generated aerosols in hydrogen atmosphere. Particle sizes of the produced Fe–Ni particles can be controlled by the change of the concentration of an initial solution. The effect of the precursor solution in the range of 0.05, 0.1, 0.2 and 0.4 M on the morphology and crystallite size of the Fe–Ni alloy particles are investigated under the conditions of 1.5 h running time, 900 °C reduction temperature, and 1.0 L/min H2 volumetric flow rate. X-ray diffraction (XRD) studies and Scherrer crystallite size calculations show that the crystalline size was nearly 28 nm. Energy dispersive spectroscopy (EDS) was performed to determine the chemical composition of the particles. Transmission electron microscope (TEM) was used to confirm the crystalline size, that was determined using XRD results. Scanning electron microscopy (SEM) observations reveal that the precursor solution strongly influences the particle size of the synthesized Fe–Ni alloy particles. Spherical nanocrystalline Fe–Ni alloy particles in the range of 80 and 878 nm were obtained at 900 °C.  相似文献   

10.
A high-energy ball milling technique using the mechanical alloying method has been employed for fabrication of glassy Co100−xTix (25≤x≤67) alloy powders at room temperature. The fabricated glassy alloys in the Co-rich (33≥x) side exhibit good soft magnetic properties. The binary glassy alloys for which the glass transition temperatures (Tg) have rather high temperatures (above 800 K), show large supercooled liquid regions before crystallization (ΔTx larger than 50 K). The reduced glass transition temperature (ratio between Tg and liquidus temperatures, Tl (Tg/Tl)) was found to be larger than 0.56. We have also performed post-annealing experiments on the mechanically deformed Co/Ti multilayered composite powders. The results show that annealing of the powders at 710 K leads to the formation of a glassy phase (thermally enhanced glass formation reaction), of which the heat of formation was measured directly. The similarity in the crystallization and magnetization behaviors between the two classes of as-annealed and as-mechanically alloyed glassy powders implies the formation of the same glass state.  相似文献   

11.
In this paper we present the results of our efforts to synthesize the nanocrystalline MgB2 superconducting compound from elemental Mg and B powders by combination of controlled mechanical pre-alloying in a magneto-mill Uni-Ball-Mill 5 under shearing mode followed by electrical discharge (ED) assisted mechanical alloying (MA). There is no conclusive evidence of MgB2 formation in the Mg-2B mixture using crystalline boron after controlled mechanical alloying (CMA) under protective argon or helium atmosphere as well as subsequent ED assisted alloying. There seems to be some XRD evidence of the strongest (1 0 1) MgB2 peak presence in the Mg-2B mixture processed using both crystalline and amorphous boron after CMA under hydrogen as well as subsequent ED assisted alloying but this evidence is rather ambiguous. We postulate here that it is highly likely that a certain critical Mg nanograin size must be achieved before a successful reaction to form nanocrystalline MgB2 is going to be completed. Following recent report by Gümbel et al. [Appl. Phys. Lett. 80 (2002) 2725] this critical value can be roughly estimated at 15 nm or less. Calculations of the Mg nanograin size in the present work show that only three Mg-2B powders ball milled under hydrogen meet this critical nanograin size criterion for the Mg phase. However, a massive formation of the β-MgH2 hydride in these powders consumes the available Mg in the reaction with hydrogen which may leave inadequate concentration of Mg to form MgB2 even though the nanograin size of Mg is sufficiently refined, say below 15 nm.  相似文献   

12.
A novel technique of aluminothermic reduction of tantalum oxide is developed to produce tantalum in form of powder. In this technique, hydrogen plasma is used to trigger the reaction in a plasma reactor. The reacted powders were analyzed by XRD and SEM. Rietveld method was used to quantify the phases present in the product of reaction. The results showed that a tantalum rich phase with a dendritic structure, typical of molten phases is formed. This phase occurred in significant amounts onto the surface and in bulk of the reacted grains.  相似文献   

13.
    
Magnetic properties of Fe-Co-Mo-Cu-B alloy system with Co up to 26 at.% were investigated. After proper thermal treatment, the nanocrystalline grain remains tiny, the density hardly increases, but the room-temperature saturation attains 1.5 T mainly due to a high enough Curie temperature. The generally observed slant hysteresis loops point to ribbon surfaces, which stress the ribbon interior and induce a specific magnetoelastic contribution to hard-ribbon-axis magnetic anisotropy even after vacuum annealing. The effect does not come from cobalt but rather from the lack of silicon. Partial removal of the surfaces resulted in a decrease of the loop tilt.  相似文献   

14.
While processing Y2O3 dispersed γ-TiAl, Y2O3 particles which dissolved during hot isostatic pressing (HIP’ing) were found to precipitate during the heat treatment in the form of a mixed Al–Y oxide. To understand the chemical reaction that occurs between Y2O3 and γ-TiAl during the heat treatment cycle, a powder mixture comprising of γ-TiAl and 10 wt.% Y2O3 was mechanically alloyed (MA’d) for 8 h and the milled powder was subjected to differential thermal analysis (DTA) at 1150 °C prior to analyzing it using X-ray diffraction technique. The present study clearly demonstrates that aluminum in the combined form either as γ-TiAl or Al2O3 reacts in a similar manner with Y2O3 when milled and heat treated at 1150 °C. In either case there is formation of Al2Y4O9 (2Y2O3.Al2O3).  相似文献   

15.
Phase formation during high energy ball milling of a ternary elemental powder mixture with a composition of Al–27.4at%Fe–28.7at%C and during low temperature heat treatment of the milled powder was studied. It was found that an amorphous phase formed during prolonged milling. During heating the shorter time milled powder, Al and Fe reacted first, forming the AlFe phase and then at a higher temperature, AlFe reacts with Fe and C, forming the AlFe3C0.5 phase. During heating the longer time milled powder which contains a substantial amount of amorphous phase, the amorphous phase partially crystallizes first, forming the AlFe and AlFe3C0.5 phases, and then AlFe reacts with the remaining amorphous phase, forming the AlFe3C0.5 phase. Overall, mechanical alloying of Al, Fe and C elemental phases enables formation of an amorphous phase, while low temperature heat treatment of mechanically milled powder facilitates formation of AlFe and AlFe3C0.5 phases.  相似文献   

16.
    
A rapid synthesis method is reported for magnetic nanoparticles of nickel ferrite involving thermal plasma assisted vapor phase condensation process. The as-synthesized samples were characterized by X-ray Diffraction, Transmission Electron Microscopy, Vibrating Sample Magnetometer and X-ray Photoelectron Spectroscopy techniques. The average particle size was determined from the TEM micrographs and found to be around 30 nm. The effects of reactor parameters on the magnetic and structural properties have been evaluated, to find the optimized parameters so as to achieve the highest values of saturation magnetization and coercivity. Reasonably high saturation magnetization (48 emu/g) has been assigned to the high degree of crystallinity, achieved on account of high temperature during the growth, and the cation redistribution. The high value of coercivity (115 Oe) is explained on the basis of possible lattice defects arising from the cation redistribution. Detailed analysis of cation distribution using the XRD line intensity data leads to the conclusion that these samples are iron deficit and nickel rich.  相似文献   

17.
    
In this study, the macroporous forsterite scaffolds with highly interconnected spherical pores, with sizes ranged from 50 to 200 μm have been successfully fabricated via gelcasting method. The crystallite size of the forsterite scaffolds was measured in the range 26-35 nm. Total porosity of different bodies sintered at different sintering temperatures was calculated in the range 81-86%, while open porosity ranges from 69 to 78%. The maximum values of compressive strength and elastic modulus of the prepared scaffolds were found to be about 2.43 MPa and 182 MPa, respectively, which are close to the lower limit of the compressive strength and elastic modulus of cancellous bone and the compressive strength is equal to the standard for a porous bioceramic bone implant (2.4 MPa). Transmission electron microscopy analyses showed that the particle sizes are smaller than 100 nm. In vitro test in the simulated body fluid proved the good bioactivity of the prepared scaffold. It seems that, the mentioned properties could make the forsterite scaffold appropriate for tissue engineering applications, but cell culture and in vivo tests are needed for more confidence.  相似文献   

18.
Near-equiatomic Fe-Pd-based nanotubes with diameters of 200 nm and lengths of 1 μm were directly electrodeposited from a single electrolyte into polycarbonate templates. The as-deposited Fe50Pd50 nanotubes were then characterized compositionally, structurally and magnetically. The as-deposited Fe50Pd50 tubes had an fcc crystal structure and were magnetically soft (HC ≈ 10 kA/m), with the easy axis of the magnetization being parallel to the axes of the tubes. Angular-dependence measurements of the coercivity, where the hysteresis loops were measured as a function of the angle (θ) of the applied demagnetizing field, revealed a combination of magnetization reversal mechanisms, consisting of the curling mechanism, which dominates at low angles, with a transition to coherent rotation at angles ≥70°. The development of the coercivity with annealing temperature due to the L10 ordering was also investigated. For this purpose the as-deposited nanotubes were annealed at temperatures from 400 °C to 650 °C for 1 h in Ar + 7% H2 and the phase formation, the microstructure and the magnetic properties were analyzed. A maximum in the coercivity of 135 kA/m was achieved upon annealing at 550 °C.  相似文献   

19.
(Cd0.8Zn0.2)S quantum dots with a mixture of both cubic (Zinc-blende) and hexagonal (Wurtzite) phases have been prepared within 75 min by mechanical alloying the stoichiometric mixture of Cd, Zn and S powders at room temperature in a planetary ball mill under Ar. The Rietveld analysis of X-ray powder diffraction data reveals relative phase abundances of both cubic and hexagonal phases and several microstructure parameters like lattice parameters, particle sizes, lattice strains, concentrations of different kinds of stacking faults, etc. in both the phases. At the time of formation, hexagonal phase dominates over the cubic phase (molar ratio ∼0.6:0.4), but in course of milling up to 15 h, the hexagonal phase partially transforms to cubic phase and the molar ratio becomes ∼0.4:0.6. Particle sizes of hexagonal and cubic phases reduce to ∼4.5 nm and 12.5 nm, respectively, after 15 h of milling. The hexagonal phase contains a significant amount of lattice strain in comparison to cubic phase. The presence of different kinds of stacking faults is revealed clearly from the high resolution transmission electron microscope (HRTEM) images.  相似文献   

20.
    
Positron annihilation spectroscopy was employed for the microstructure characterization of rapidly solidified Al-3 wt.% Cr-3 wt.% Fe-0.8 wt.% Ce alloy prepared by melt spinning. Results of the positron annihilation study are analyzed within the diffusion trapping model and compared with results of X-ray diffraction, transmission electron microscopy and microhardness measurements. A good consistency among all experimental techniques was obtained. The rapidly solidified alloy exhibits ultra fine grained structure, consisting of cells separated by dislocation walls. Annealed samples showed no significant changes in structure up to 400 °C which proves good thermal stability of ultra fine grained structure. Exposure of the sample to temperature of 500 °C caused significant changes in the material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号