首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mo-gate n-channel poly-Si thin-film transistors (TFT's) have been fabricated for the first time at a low processing temperature of 260°C. A 500-1000-A-thick a-Si:H was successfully crystallized by XeCl excimer laser (308nm) annealing without heating a glass substrate. TFT's were fabricated in the crystallized Si film. The channel mobility of the TFT was 180cm2/V.s when the a-Si:H was crystallized by annealing with a laser having an energy density of 200 mJ/cm2. This result shows that high-speed silicon devices can be fabricated at a low temperature using XeCl excimer laser annealing.  相似文献   

2.
This letter reports a. new excimer laser annealing (ELA) method to produce large polycrystalline silicon (poly-Si) lateral grains exceeding 4 μm. A selectively floating amorphous silicon (a-Si) flint with a 50 nm-thick air-gap was irradiated by a single-pulse XeCl excimer laser and uniform lateral grains were grown due to the lateral thermal gradient caused by the low thermal conductivity of the air. A poly-Si thin-film transistor (TFT) with two high-quality 4.6 μm-long lateral grains was fabricated by employing the proposed ELA and high field-effect mobility of 331 cm2/Vsec was obtained due to. the high-quality grain structure  相似文献   

3.
Key technologies for fabricating polycrystalline silicon thin film transistors (poly-Si TFTs) at a low temperature are discussed. Hydrogenated amorphous silicon films were crystallized by irradiation of a 30 ns-pulsed XeCl excimer laser. Crystalline grains were smaller than 100 nm. The density of localized trap states in poly-Si films was reduced to 4×1016 cm-3 by plasma hydrogenation only for 30 seconds. Remote plasma chemical vapor deposition (CVD) using mesh electrodes realized a good interface of SiO 2/Si with the interface trap density of 2.0×1010 cm-2 eV-1 at 270°C. Poly-Si TFTs were fabricated at 270°C using laser crystallization, plasma hydrogenation and remote plasma CVD. The carrier mobility was 640 cm2/Vs for n-channel TFTs and 400 cm2/Vs for p-channel TFTs. The threshold voltage was 0.8 V for n-channel TFTs and -1.5 V for p-channel TFTs. The leakage current of n-channel poly-Si TFTs was reduced from 2×10-10 A/μm to 3×10-13 A/μm at the gate voltage of -5 V using an offset gate electrode with an offset length of 1 μm  相似文献   

4.
A thin-film transistor (TFT) with a maximum field-effect mobility of 320 cm2/V-s, an on/off current ratio of 7.6×107 , a threshold voltage of 6.7 V and a subthreshold slope of 0.37 V/decade was fabricated by using pulse laser annealing processes. Amorphous silicon films (a-Si:H) with a very low impurity concentration of 4×1018 cm-3 for oxygen, 1.5×1018 cm-3 for carbon, and 2×1017 cm-3 for nitrogen were deposited by a plasma chemical vapor deposition (CVD) method and annealed by KrF excimer laser (wavelength of 248 nm). The Raman spectroscopy technique was a useful tool for optimizing laser annealing conditions. Experimental results show that two factors are very important for fabricating very-high mobility TFTs: (1) utilizing high-purity as-deposited a-Si:H film; and (2) performing whole laser annealing processes sequentially in a vacuum container and optimizing illumination conditions  相似文献   

5.
We report results on thin-film transistors (TFTs) made from a new hybrid process in which amorphous silicon (a-Si) is first converted to polycrystalline silicon (poly-Si) using Ni-metal-induced lateral crystallization (MILC), and then improved using excimer laser annealing (laser MILC or L-MILC). With only a very low shot laser process, we demonstrate that laser annealing of MILC material can improve the electron mobility from 80 to 170 cm2/Vs, and decrease the minimum leakage current by one to two orders of magnitude at a drain bias of 5 V. Similar trends occur for both p- and n-type material. A shift in threshold voltage upon laser annealing indicates the existence of a net positive charge in Ni-MILC material, which is neutralised upon laser exposure. The MILC material in particular exhibits a very high generation state density of ~1019 cm-3 which is reduced by an order of magnitude in L-MILC material. The gate and drain field dependences of leakage current indicate that the leakage current in MILC transistors is related to this high defect level and the abruptness of the channel/drain junction. This can be improved with a lightly doped drain (LDD) implant, as in other poly-Si transistors  相似文献   

6.
A new excimer laser annealing method, which results in large lateral polysilicon grains exceeding 1.5 μm, has been proposed and polycrystalline silicon thin film transistors (poly-Si TFTs) with a single grain boundary in the channel have been successfully fabricated. The proposed method employs a lateral grain growth phenomenon obtained by excimer laser irradiation on an amorphous silicon layer with pre-patterned aluminum film. The aluminum patterns act as a masking layer of the incident laser beam for the selective melting of the amorphous silicon layer. Uniform and large grains are obtained near the edge of the aluminum patterns. When two aluminum patterns are separated by a 2 μm space, the solidified region (i.e., poly-Si channel) exhibits a single grain boundary. The n-channel poly-Si TPT fabricated by the proposed method shows considerably improved I-V characteristics, such as high field effect mobility exceeding 240 cm2/Vs  相似文献   

7.
A new low temperature crystallization method for poly-Si TFTs was developed: Metal-Induced Lateral Crystallization (MILC). The a-Si film in the channel area of a TFT was laterally crystallized from the source/drain area, on which an ultrathin nickel layer was deposited before annealing. The a-channel poly-Si TFTs fabricated at 500°C by MILC showed a mobility of 121 cm2/V·s, a threshold voltage of 1.2 V, and an on/off current ratio of higher than 106 . These electrical properties are much better than TFTs fabricated by conventional crystallization at 600°C  相似文献   

8.
High-mobility p-channel poly-Si TFTs were fabricated using a new low-temperature process (⩽500°C): self-aligned metal-induced lateral crystallization (MILC). With a one-step annealing at 500°C, activation of dopants in source/drain/gate a-Si films as well as the crystallization of channel a-Si films was achieved. The TFTs showed a threshold voltage of -1.7 V, and an on/off current ratio of ~107 without post-hydrogenation. The mobility was measured to be as high as 90 cm2/V·s, which is two to three times higher than that of the poly-Si TFTs fabricated by conventional solid-phase crystallization at around 600°C  相似文献   

9.
Inverse staggered polycrystalline silicon (poly-Si) and hydrogenated amorphous silicon (a-Si:H) double structure thin-film transistors (TFT's) are fabricated based on the conventional a-Si:H TFT process on a single glass substrate. After depositing a thin (20 nm) a-Si:H using the plasma CVD technique at 300°C, Ar+ and XeCl (300 mJ/cm2) lasers are irradiated successively, and then a thick a-Si:H (200 nm) and n+ Si layers are deposited again. The field effect mobilities of 10 and 0.5 cm 2/V·s are obtained for the laser annealed poly-Si and the a-Si:H (without annealing) TFT's, respectively  相似文献   

10.
The fluorine ion implantation applied to the polycrystalline silicon thin-film transistors (poly-Si TFTs) is investigated in this letter. Experimental results have shown that fluorine ion implantation effectively minimized the trap state density, leading to superior electrical characteristics such as high field-effect mobility, low threshold voltage, and high ON/OFF current ratio. Furthermore, the fluorine ions tended to segregate at the interface between the gate oxide and poly-Si layers during the excimer laser annealing, even without the extra deposition of pad oxide on the poly-Si film. The presence of fluorine obviously enhanced electrical reliability of poly-Si TFTs.  相似文献   

11.
A remote plasma chemical vapor deposition (RPCVD) of SiO2 was investigated for forming an interface of SiO2/Si at a low temperature below 300°C. A good SiO2/Si interface was formed on Si substrates through decomposition and reaction of SiH4 gas with oxygen radical by confining plasma using mesh plates. The density of interface traps (Dit) was as low as 3.4×1010 cm-2eV-1. N- and p-channel Al-gate poly-Si TFTs were fabricated at 270°C with SiO2 films as a gate oxide formed by RPCVD and laser crystallized poly-crystalline films formed by a pulsed XeCl excimer laser. They showed good characteristics of a low threshold voltage of 1.5 V (n-channel) and -1.5 V (p-channel), and a high carrier mobility of 400 cm2/Vs  相似文献   

12.
Using two-step doping with excimer laser, p-channel MOSFETs were fabricated in thin silicon films on sapphire (SOS). Source and drain p + layers were formed using two-step doping with only one melting pulse of excimer laser. Devices were processed at room temperature except for the LPCVD gate oxide deposition at 450°C. High-quality thin film transistors (TFTs) were fabricated with on/off current ratio of 7 and a field effect hole mobility of 145 cm2/V s  相似文献   

13.
High mobility polycrystalline Si thin-film transistors (poly-Si TFTs) are firstly fabricated on flexible stainless-steel substrates 100 μm thick through low-temperature processes where both active Si and gate SiO2 films are deposited by glow-discharge sputtering and the Si films are crystallized by KrF excimer laser irradiation. The gate SiO2 films are sputter-deposited in oxygen atmosphere from the SiO2 target. Resulting poly-Si TFTs show excellent characteristics of mobility of 106 cm2/V·s and drain current on-off ratio of as high as 1×106. Thus, the poly-Si TFTs are very promising for realizing novel flat panel displays of lightweight and rugged LCDs and LEDs  相似文献   

14.
A new poly-crystal silicon thin-film transistor (poly-Si TFT) with a transparent bottom-gate electrode has been fabricated by XeF excimer-laser light irradiation from the glass substrate side. Compared with poly-Si TFTs made by XeF or ArF excimer-laser light irradiation to the top Si surface, the new TFT shows a higher electron mobility of about 100 cm2/Vs, independent of the Si film thickness. Therefore, poly-Si driver TFTs and amorphous-silicon (a-Si) TFTs for the matrix can be formed with the same channel-etch type bottom-gate structure simultaneously on the same glass substrate by using the same starting materials. This is expected to open the way for making driver monolithic and active matrix liquid crystal displays  相似文献   

15.
A new excimer laser annealing (ELA) process that uses a floating amorphous-Silicon (a-Si) thin film with a multichannel structure is proposed for high-performance poly-Si thin-film transistors (TFTs). The proposed ELA method produces two-dimensional (2-D) grain growth, which can result in a high-quality grain structure. The dual-gate structure was employed to eliminate the grain boundaries perpendicular to the current flow in the channel. A multichannel structure was adapted in order to arrange the grain boundary to be parallel to the current flow. The proposed poly-Si TFT exhibits high-performance electrical characteristics, which are a high mobility of 504 cm/sup 2//Vsec and a low subthreshold slope of 0.337 V/dec.  相似文献   

16.
High-performance polycrystalline silicon (poly-Si) thin-film transistors (TFTs) have been fabricated using metal-induced crystallization followed by laser annealing (L-MIC). Laser annealing after MIC was found to yield a major improvement to the electrical characteristics of poly-Si TFTs. At a laser fluence of 330 mJ/cm/sup 2/, the field effect mobility increased from 71 to 239 cm/sup 2//Vs, and the minimum leakage current reduced from around 3.0/spl times/10/sup -12/ A//spl mu/m to 2.9/spl times/10/sup -13/ A//spl mu/m at a drain voltage of 5 V. In addition, the dependence of the TFT characteristics on the laser energy density was much weaker than that for conventional excimer laser annealed poly-Si TFTs.  相似文献   

17.
In this letter, a novel process for fabricating p-channel poly-Si/sub 1-x/Ge/sub x/ thin-film transistors (TFTs) with high-hole mobility was demonstrated. Germanium (Ge) atoms were incorporated into poly-Si by excimer laser irradiation of a-Si/sub 1-x/Ge/sub x//poly-Si double layer. For small size TFTs, especially when channel width/length (W/L) was less than 2 /spl mu/m/2 /spl mu/m, the hole mobility of poly-Si/sub 1-x/Ge/sub x/ TFTs was superior to that of poly-Si TFTs. It was inferred that the degree of mobility enhancement by Ge incorporation was beyond that of mobility degradation by defect trap generation when TFT size was shrunk to 2 /spl mu/m/2 /spl mu/m. The poly-Si/sub 0.91/Ge/sub 0.09/ TFT exhibited a high-hole mobility of 112 cm/sup 2//V-s, while the hole mobility of the poly-Si counterpart was 73 cm/sup 2//V-s.  相似文献   

18.
High-mobility poly-Si thin-film transistors (TFTs) were fabricated by a novel excimer laser crystallization method based on dual-beam irradiation. The new method can reduce the solidification velocity of the top Si layer by heating the bottom Si layer of the Si/SiO2/Si/glass substrate structure by means of laser irradiation not only from the front side but also from the back side. The grain size of poly-Si film was enlarged up to 2 μm. The field-effect mobilities of the TFT exceeded 380 cm2/V-s for electrons and 100 cm2/V-s for holes  相似文献   

19.
We have developed a low-temperature fabrication process (⩽ 200°C for high-quality polycrystalline Si thin-film transistors (poly-Si TFTs) on flexible stainless-steel foils. The fabrication processes is realized through sputter deposition of thin films, including active-Si and gate-SiO2 films, crystallization of Si films by KrF excimer laser irradiation, and inductively coupled plasma hydrogenation. High-quality n- and p-channel poly-Si TFTs are successfully fabricated without suffering from problems of substrate bending, film ablation, or cracking in films. The resulting n- and p-channel poly-Si TFTs showed mobilities of 106 and 122 cm2/V·s, respectively. This paper describes the deposition and properties of the sputtered Si films and the fabrication process and electrical characteristics of the poly-SiTFTs  相似文献   

20.
Electric field enhanced silicide mediated crystallization (SMC) was introduced for low-temperature polycrystalline silicon thin-film transistors (TFTs) on glass substrates. The amorphous silicon (a-Si) film having an average Ni thickness of 0.15 Å, was completely crystallized at a temperature of 480°C within 30 min in the presence of an electric field of 40 V/cm. The poly-Si is composed of needlelike crystallites with a few μm length and about 50 nm width. The poly-Si TFT using the SMC exhibited a field effect mobility of 86 cm2/Vs, a threshold voltage of -0.6 V, and a subthreshold slope of 0.6 V/dec  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号