首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Na+ currents in adult rat large dorsal root ganglion neurons were recorded during long duration voltage-clamp steps by patch clamping whole cells and outside-out membrane patches. Na+ current present >60 ms after the onset of a depolarizing pulse (late Na+ current) underwent partial inactivation; it behaved as the sum of three kinetically distinct components, each of which was blocked by nanomolar concentrations of tetrodotoxin. Inactivation of one component (late-1) of the whole cell current reached equilibrium during the first 60 ms; repolarizing to -40 or -50 mV from potentials of -30 mV or more positive gave rise to a characteristic increase in current (tau >/= 5 ms), attributed to removal of inactivation. A second component (late-2) underwent slower inactivation (tau > 80 ms) at potentials more positive than -80 mV, and steady-state inactivation appeared complete at -30 mV. In small membrane patches, bursts of brief openings (gamma = 13-18 pS) were usually recorded. The distribution of burst durations indicated that two populations of channel were present with inactivation rates corresponding to late-1 and late-2 macroscopic currents. The persistent Na+ current in the whole cell that extended to potentials more positive than -30 mV appeared to correspond to sporadic, brief openings that were recorded in patches (mean open time approximately 0.1 ms) over a wide potential range. None of the three types of gating described corresponded to activation/inactivation gating overlap of fast transient currents.  相似文献   

2.
Two distinct morphological subtypes of astrocytes have been shown to express Na+ currents that differ biophysically and pharmacologically. Using an in vitro model for reactive gliosis, we recently reported marked changes in Na+ and K+ channel expression by astrocytes induced to proliferate. Using this in vitro assay in which a confluent monolayer of astrocytes is mechanically scarred to induce gliosis, we now demonstrate that sodium currents of scar-associated cells, in addition to doubling in current density, also switch from being tetrodotoxin-sensitive(TTX-S, IC50 8 nM) to being approximately 40-fold more TTX-resistant (TTX-R,IC50 314 nM). These changes occurred within 6 h after injury and were not associated with any notable changes in cell morphology. Changes in biophysical properties were analyzed for the two current types. The activation curve for TTX-R currents demonstrated a significant depolarized shift versus that of TTX-S currents (P 相似文献   

3.
Whole cell patch-clamp techniques were used to study voltage-dependent sodium (Na+), calcium (Ca2+), and potassium (K+) conductances in acutely isolated neurons from cortical layer I of adult rats. Layer I cells were identified by means of gamma-aminobutyric acid (GABA) immunocytochemistry. Positive stainings for the Ca2+-binding protein calretinin in a subset of cells, indicated the presence of Cajal-Retzius (C-R) cells. All investigated cells displayed a rather homogeneous profile of voltage-dependent membrane currents. A fast Na+ current activated at about -45 mV, was half-maximal steady-state inactivated at -66.6 mV, and recovery from inactivation followed a two-exponential process (tau1 = 8.4 ms and tau2 = 858.8 ms). Na+ currents declined rapidly with two voltage-dependent time constants, reaching baseline current after some tens of milliseconds. In a subset of cells (< 50%) a constant current level of < 65 pA remained at the end of a 90 ms step. A transient outward current (Ifast) activated approximately -40 mV, declined rapidly with a voltage-insensitive time constant (tau approximately 350 ms) and was relatively insensitive to tetraethylammonium (TEA, 20 mM). Ifast was separated into two components based on their sensitivity to 4-aminopyridine (4-AP): one was blocked by low concentrations (40 microM) and a second by high concentrations (6 mM). After elimination of Ifast by a conditioning prepulse (50 ms to -50 mV), a slow K+ current (I(KV)) could be studied in isolation. I(KV) was only moderately affected by 4-AP (6 mM), while TEA (20 mM) blocked most (> 80%) of the current. I(KV) activated at about -40 mV, declined monoexponentially in a voltage-dependent manner (tau approximately 850 ms at -30 mV), and revealed an incomplete steady-state inactivation. In addition to Ifast and I(KV), indications of a Ca2+-dependent outward current component were found. When Na+ currents, Ifast, and I(KV) were blocked by tetrodotoxin (TTX, 1 microM), 4-AP (6 mM) and TEA (20 mM) an inward current carried by Ca2+ was found. Ca2+ currents activated at depolarized potentials at about -30 mV, were completely blocked by 50 microM cadmium (Cd2+), were sensitive to verapamil (approximately 40% block by 10 microM), and were not affected by nickel (50 microM). During current clamp recordings, isolated layer I neurons displayed fast spiking behaviour with short action potentials (approximately 2 ms, measured at half maximal amplitude) of relative small amplitude (approximately 83 mV, measured from the action potential threshold).  相似文献   

4.
1. N-type (omega-conotoxin sensitive) calcium currents (ICa) were recorded in identified neurons in Hermissenda crassicornis using low-resistance patch electrodes (0.7 +/- 0.3 M omega; n = 101) under conditions that eliminated inward Na+ currents (choline ions substitution) and suppressed outward K+ currents (Cs+, tetraethylammonium, and 4-AP). Step depolarization from a holding potential of -60 mV to potentials above -30 mV elicited ICa, which peaked approximately 20 mV and declined with increasing depolarizations. 2. Evidence for a low-threshold current was present. Step depolarization from a more hyperpolarizing potentials (e.g., -90 mV) revealed a small shoulder (< 100 pA) at -60 to -40 mV that was sensitive to Co2+ and Ni2+. However, under the conditions examined here (holding potential of -60 mV), the high-voltage-activated current predominated. 3. Barium (Ba2+) and strontium (Sr2+) permeate the Ca2+ channel with similar activation kinetics (ease of permeation; Ba2+ > Ca2+ > Sr2+). Steady-state activation of permeability versus membrane potentials for Ca2+, Ba2+, and Sr2+ as charge carriers could be fitted with the Boltzmann equation, with half-activation voltage and slope factor of 2.9 and 7.7 mV for ICa, -13.1 mV and 7.8 for Ba2+ current (IBa) and -2.3 mV and 7.8 for Sr2+ current (ISr). The time course of activation was monotonic with time constant (tau) for ICa ranging from 2 to 8 ms. 4. The inactivation profile was complex. At negative step potentials (e.g., -20 mV), inactivation of the current was slow. Depolarization steps to relatively positive voltages (e.g., 10 mV) showed more rapid inactivation than those at more positive potentials (e.g., 40 mV). When extracellular Ca2+ was raised from 5 to 10 mM, a biphasic decay (tau fast of 25 +/- 4 ms; and tau slow of 473 +/- 64 ms; mean +/- SD, n = 9) was seen. Such an observation suggested a current-mediated inactivation. 5. With a pulse duration of approximately 350 ms, ISr showed inactivation whereas Ba2+ virtually removed the decay. However, IBa turned off with more prolonged depolarization. 6. A twin-pulse protocol was used to assess the voltage dependence of inactivation: an incomplete U-shaped inactivation curve was observed for ICa, IBa, and ISr. Channels available for inactivation were increased in the presence of Ca2+ ions. 7. Inactivation was further studied with the Ca2+ chelators, ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid and bis(o-aminophenoxy)-N,N,N',N'-tetraacetic acid (BAPTA). With 10 mM of BAPTA, in the pipette, inactivation was reduced but not removed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Enzymatically isolated myocytes from ferret right ventricles (12-16 wk, male) were studied using the whole cell patch clamp technique. The macroscopic properties of a transient outward K+ current I(to) were quantified. I(to) is selective for K+, with a PNa/PK of 0.082. Activation of I(to) is a voltage-dependent process, with both activation and inactivation being independent of Na+ or Ca2+ influx. Steady-state inactivation is well described by a single Boltzmann relationship (V1/2 = -13.5 mV; k = 5.6 mV). Substantial inactivation can occur during a subthreshold depolarization without any measurable macroscopic current. Both development of and recovery from inactivation are well described by single exponential processes. Ensemble averages of single I(to) channel currents recorded in cell-attached patches reproduce macroscopic I(to) and indicate that inactivation is complete at depolarized potentials. The overall inactivation/recovery time constant curve has a bell-shaped potential dependence that peaks between -10 and -20 mV, with time constants (22 degrees C) ranging from 23 ms (-90 mV) to 304 ms (-10 mV). Steady-state activation displays a sigmoidal dependence on membrane potential, with a net aggregate half-activation potential of +22.5 mV. Activation kinetics (0 to +70 mV, 22 degrees C) are rapid, with I(to) peaking in approximately 5-15 ms at +50 mV. Experiments conducted at reduced temperatures (12 degrees C) demonstrate that activation occurs with a time delay. A nonlinear least-squares analysis indicates that three closed kinetic states are necessary and sufficient to model activation. Derived time constants of activation (22 degrees C) ranged from 10 ms (+10 mV) to 2 ms (+70 mV). Within the framework of Hodgkin-Huxley formalism, Ito gating can be described using an a3i formulation.  相似文献   

6.
Three kinetically distinct Ca2+-independent depolarization-activated K+ currents in callosal-projecting rat visual cortical neurons. J. Neurophysiol. 78: 2309-2320, 1997. Whole cell, Ca2+-independent, depolarization-activated K+ currents were characterized in identified callosal-projecting (CP) neurons isolated from postnatal day 7-16 rat primary visual cortex. CP neurons were identified in vitro after in vivo retrograde labeling with fluorescently tagged latex microbeads. During brief (160-ms) depolarizing voltage steps to potentials between -50 and +60 mV, outward K+ currents in these cells activate rapidly and inactivate to varying degrees. Three distinct K+ currents were separated based on differential sensitivity to 4-aminopyridine (4-AP); these are referred to here as IA, ID, and IK, because their properties are similar (but not identical) K+ currents termed IA, ID, and IK in other cells. The current sensitive to high (>/=100 mu M) concentrations of 4-AP (IA) activates and inactivates rapidly; the current blocked completely by low (相似文献   

7.
Whole-cell transmembrane potassium currents were studied in somatic membrane of freshly isolated rat dorsal root ganglion neurons. We defined three types of potassium currents, which were separated on the basis of their different potential dependence of activation and sensitivity to external tetraethylammonium and 4-aminopyridine. The potential dependence of kinetic and steady-state properties of a fast inactivating potassium current, a slow inactivating potassium current and a non-inactivating delayed rectifier current were described by the Hodgkin-Huxley equations. A transient fast inactivating potassium current was activated at the most negative membrane potentials and was not reduced in the presence of 10 mM tetraethylammonium in the external solution. 4-Aminopyridine (2 mM) caused an 80% inhibition of this current. The activation of the fast inactivating potassium current was properly described by fitting a single exponent raised to the fourth power. The time constant of activation changed from 4 to 1 ms in the voltage range between -30 and +40 mV. The time constant of inactivation decreased from 35 to 15 ms over the same range of potentials. Parameters for the fit of a Boltzmann equation to mean values for steady-state activation were V1/2=-20mV, k=11.8mV, and for steady-state inactivation V1/2= -85 mV, k=-9.8 mV. A transient slow inactivating potassium current had an activation threshold between -40 and -30 mV. At 2 mM 4-aminopyridine, the depression of the slow potassium current was 55%. The extracellular application of 10 mM tetraethylammonium was less effective and evoked a 40% reduction. The activation of the slow inactivating potassium current was also described by a single exponential function raised to the fourth power. The time constant of activation decreased from 12 ms at a membrane potential of -10 mV to 4 ms at the potential of 60 mV. The inactivation of slow inactivating potassium current was described by two exponents. The time constant for the fast exponent ranged from 300 ms at -20 mV to 160 ms at +60 mV. The slower exponent was also potential dependent and its time constant ranged from approximately 2600 to 1600 ms over the same potentials. Parameters for the Boltzmann equation fittings to mean values were V1/2= -12.8 mV, k=13.4 mV and V1/2= -54.6 mV, k= -12 mV for steady-state activation and inactivation, respectively. A non-inactivating delayed rectifier potassium current was activated at the most positive membrane potentials. This non-inactivating current did not change in the presence of 4-aminopyridine. Extracellular tetraethylammonium (10 mM) caused a 70% reduction of this current. The activation of the non-inactivating potassium current was described by one exponent raised to the fourth power. The time constant for activation ranged from 85 ms at -5 mV to 30 ms at 45 mV. No time-dependent inactivation was observed during 15-s testing potentials in the voltage range between 10 and +60 mV. The activation behavior was characterized by V1/2=15.3 mV, k=12.5 mV. The densities of these potassium currents were studied for three groups of animals: one, five to six and 14-15 days of postnatal development. Fifty cells were examined in each age group. All three types of potassium currents were found in each investigated neuron. The mean densities of slow and fast inactivating potassium currents increased during ontogenetic development. The densities of non-inactivating delayed rectifier potassium current decreased in the first week of ontogenetic development and did not change thereafter.  相似文献   

8.
Single-channel properties of a delayed rectifier voltage-gated K+ channel (I-type) were investigated in peripheral myelinated axons from Xenopus laevis. Channels activated between -60 and -40 mV with a potential of half-maximal activation, E50, at -47.5 mV. Averaged single-channel currents activated with a time delay at all membrane potentials tested. Time to half-maximal activation decreased from 80 to 1.6 msec between -60 and +40 mV. The channel inactivated monoexponentially with a time constant of 10.9 sec at -40 mV. The time constant of deactivation was 126 msec at -80 mV and 16.9 msec at -110 mV. In symmetrical 105 mM K+, the single-channel conductance (gamma) was 22 and 13 pS at negative and positive membrane potentials, respectively, at 13-15 degrees C. In Na+ -rich solution with 2.5 mM extracellular K+ gamma was 7 pS and the reversal potential was negative to -80 mV, indicating a high selectivity for K+ over Na+. gamma depended on extracellular K+ concentration (KD = 19.6 mM) and temperature (Q10 = 1.45). External tetraethylammonium (TEA) reduced the apparent single-channel amplitude at all potentials tested with a half-maximal inhibiting concentration (IC50) of 0.6 mM. Open probability of the channel, but not single-channel current amplitude was decreased by extracellular dendrotoxin (DTX, IC50 = 6.8 nM). mast cell degranulating peptide (MCDP, IC50 = 41.9 microM). In Ringer solution the membrane potential of macroscopic I-channel patches was about -65 mV and depolarized under TEA and DTX. It is concluded that besides their activation during action potentials, I-channels may also stabilize the resting membrane potential.  相似文献   

9.
Outward currents through the inward rectifier K+ channel contribute to repolarization of the cardiac action potential. The properties of the IRK1 channel expressed in murine fibroblast (L) cells closely resemble those of the native cardiac inward rectifier. In this study, we added Mg2+ (0.44-1.1 mM) or putrescine (approximately 0.4 mM) to the intracellular milieu where endogenous polyamines remained, and then examined outward IRK1 currents using the whole-cell patch-clamp method at 5.4 mM external K+. Without internal Mg2+, small outward currents flowed only at potentials between -80 (the reversal potential) and approximately -40 mV during voltage steps applied from -110 mV. The strong inward rectification was mainly caused by the closed state of the activation gating, which was recently reinterpreted as the endogenous-spermine blocked state. With internal Mg2+, small outward currents flowed over a wider range of potentials during the voltage steps. The outward currents at potentials between -40 and 0 mV were concurrent with the contribution of Mg2+ to blocking channels at these potentials, judging from instantaneous inward currents in the following hyperpolarization. Furthermore, when the membrane was repolarized to -50 mV after short depolarizing steps (> 0 mV), a transient increase appeared in outward currents at -50 mV. Since the peak amplitude depended on the fraction of Mg(2+)-blocked channels in the preceding depolarization, the transient increase was attributed to the relief of Mg2+ block, followed by a re-block of channels by spermine. Shift in the holding potential (-110 to -80 mV), or prolongation of depolarization, increased the number of spermine-blocked channels and decreased that of Mg(2+)-blocked channels in depolarization, which in turn decreased outward currents in the subsequent repolarization. Putrescine caused the same effects as Mg2+. When both spermine (1 microM, an estimated free spermine level during whole-cell recordings) and putrescine (300 microM) were applied to the inside-out patch membrane, the findings in whole-cell IRK1 were reproduced. Our study indicates that blockage of IRK1 by molecules with distinct affinities, spermine and Mg2+ (putrescine), elicits a transient increase in the outward IRK1, which may contribute to repolarization of the cardiac action potential.  相似文献   

10.
The modification of the discharge pattern of subthalamic nucleus (STN) neurons from single-spike activity to mixed burst-firing mode is one of the characteristics of parkinsonism in rat and primates. However, the mechanism of this process is not yet understood. Intrinsic firing patterns of STN neurons were examined in rat brain slices with intracellular and patch-clamp techniques. Almost half of the STN neurons that spontaneously discharged in the single-spike mode had the intrinsic property of switching to pure or mixed burst-firing mode when the membrane was hyperpolarized from -41.3 +/- 1.0 mV (range, -35 to -50 mV; n = 15) to -51.0 +/- 1.0 mV (range, -42 to -60 mV; n = 20). This switch was greatly facilitated by activation of metabotropic glutamate receptors with 1S,3R-ACPD. Recurrent membrane oscillations underlying burst-firing mode were endogenous and Ca2+-dependent because they were largely reduced by nifedipine (3 microM), Ni2+ (40 microM), and BAPTA-AM (10-50 microM) at any potential tested, whereas TTX (1 microM) had no effect. In contrast, simultaneous application of TEA (1 mM) and apamin (0.2 microM) prolonged burst duration. Moreover, in response to intracellular stimulation at hyperpolarized potentials, a plateau potential with a voltage and ionic basis similar to those of spontaneous bursts was recorded in 82% of the tested STN neurons, all of which displayed a low-threshold Ni2+-sensitive spike. We propose that recurrent membrane oscillations during bursts result from the sequential activation of T/R- and L-type Ca2+ currents, a Ca2+-activated inward current, and Ca2+-activated K+ currents.  相似文献   

11.
12.
The K+ channel blocking action of the class Ic antiarrhythmic agent flecainide was compared with that of propafenone and quinidine in isolated adult rat ventricular myocytes by using the whole-cell patch-clamp technique. In rat ventricular myocytes, depolarization activates both an inactivating (ITO) and a maintained (IK) outward K+ current. Flecainide, propafenone and quinidine all were potent inhibitors of ITO with IC50s of 3.7, 3.3 and 3.9 microM, respectively. Flecainide and quinidine were less potent inhibitors of IK than was propafenone with IC50s of 15 and 14 microM compared with an IC50 of 5 microM for propafenone. By contrast with their effects on outward currents, these agents produced little or no inhibition of the inward rectifier K+ current, even when present at 300 microM. All three agents produced a concentration-dependent increase in the rate of inactivation of ITO but they only produced minor hyperpolarizing shifts (approximately 3 mV) in the voltage dependence of steady-state inactivation. Although propafenone had little effect on the rate of ITO recovery from inactivation (tau CONTROL = 64 +/- 5 ms; tau PROPAFENONE = 84 +/- 9 ms), ITO recovery in the presence of flecainide and quinidine was biexponential; it exhibited an additional slow component (tau FAST = 67 +/- 5 ms and tau SLOW = 2580 +/- 1500 ms for flecainide; tau FAST = 55 +/- 5 ms and tau SLOW = 871 +/- 99 ms for quinidine). Consistent with these observations, flecainide and quinidine, but not propafenone, produced use-dependent block of ITO at a stimulation frequency of 1 Hz.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
A hyperpolarization-activated current (termed I[h]) is believed to provide a pacemaker depolarization in sinoatrial node cells and in some central and peripheral neurons. In the present study, we examined if such an inward cation current exists in primary auditory neurons using the whole-cell patch-clamp technique. A large inward, non-inactivating current was seen during hyperpolarizing steps negative to the resting potential. A depolarizing sag occurred during hyperpolarizing current injection, and upon termination of the current injection there was an overshoot, or a rebound firing. A low concentration of Cs+, but not Ba2+, reversibly blocked the inward current and depolarizing sag. The activation of the current showed voltage dependence with half-activation occurring at -101 +/- 1 mV. The time course of I(h) activation was fitted by double exponential function and was voltage-dependent (time constants: tau1 and tau2 = 480 and 3125 ms at -100 mV, and 66 and 404 ms at -160 mV). The reversal potential of the current was -36 mV measured from tail currents. The conductance of the current was decreased in Na+-free solution, and increased in high K+ solution. Increases in the levels of intracellular cAMP or cGMP enhanced the current. The results suggest that there exists a hyperpolarization-activated inward cation current in mammalian primary auditory neurons. This current may provide a depolarizing current during the membrane hyperpolarization following each firing of the primary auditory nerve.  相似文献   

14.
1. Ca inward current and the corresponding phasic component of tension were measured in frog atrial muscle under voltage-clamp conditions in Na-free (Li) Ringer solution with tetrodotoxin (TTX) added. 2. The quantity of Ca ions entering the cell upon depolarization, delta[Ca]i, was linearly related to peak phasic tension. 3. The voltage dependence of the steady-state inactivation of the Ca-carrying system, f infinity, against voltage yielded similar relationships whether determined directly from variations of Ca inward current or peak phasic tension. The Ca system was almost fully available at potentials more negative than -45 mV and almost fully inactivated at potentials more positive than +10 mV. 4. It was established that the time- and voltage-dependence of Ca current and of phasic tension are directly related. The time constants of Ca activation, tau f, were comparable in the range of membrane potential investigated (-20 to +25 mV), whether determined directly from the decay of Ca current or indirectly from peak phasic tension. 5. It was concluded that the Ca current, ICa, directly activates phasic contraction and that either parameter can be used as an indicator of the kinetics of the Ca-carrying system. Peak phasic tension was used to determine tau f further in the membrane potential range in which interference by other membrane currents renders direct analysis of Ca current difficult. 6. The tau f against voltage relationship determined from phasic tension showed that the inactivation process of the Ca-carrying system is slowest at membrane potentials around -13 mV (tau f = 55 msec) and that the rate of inactivation increases with both increasing and decreasing depolarizations. 7. It is suggested that normal repolarization in frog myocardium depends mainly on the decay of Ca inward current rather than on an increase of outward current.  相似文献   

15.
The channel underlying the slow component of the voltage-dependent delayed outward rectifier K+ current, I(Ks), in heart is composed of the minK and KvLQT1 proteins. Expression of the minK protein in Xenopus oocytes results in I(Ks)-like currents, I(sK), due to coassembly with the endogenous XKvLQT1. The kinetics and voltage-dependent characteristics of I(sK) suggest a distinct mechanism for voltage-dependent gating. Currents recorded at 40 mV from holding potentials between -60 and -120 mV showed an unusual "cross-over," with the currents obtained from more depolarized holding potentials activating more slowly and deviating from the Cole-Moore prediction. Analysis of the current traces revealed two components with fast and slow kinetics that were not affected by the holding potential. Rather, the relative contribution of the fast component decreased with depolarized holding potentials. Deactivation and reactivation, after a short period of repolarization (100 ms), was markedly faster than the fast component of activation. These gating properties suggest a physiological mechanism by which cardiac I(Ks) may suppress premature action potentials.  相似文献   

16.
Whole-cell patch-clamp recordings were used to characterize the membrane properties and ion channel complement of floor plate neuroepithelia in embryonic and neonatal rats. The average resting potential was close to -60 mV, the capacitance was approximately 7 pS and the membrane time constant averaged 31 ms, in both neonates and embryos. Two types of K+ current were identified (i) a slowly activating, slowly inactivating current that was present in all cells, and (ii) a rapidly inactivating current that was present in 39% of cells from neonates and 64% of cells from embryos. K+ currents were significantly larger in neonates than embryos. Na+ currents were absent from all neuroepithelial cells examined. In contrast, the majority of floor plate cells exhibited a significant Ca2+ current. Biophysically this current activated at potentials positive to 60 mV and exhibited fast, voltage-dependent, inactivation. The Ca2+ current was equipermeant to Ca2+ and Ba2+, sensitive to 40-120 microM Ni2+ and only slightly inhibited by 100 microM Cd2+. These and other observations indicated this current is mediated by low-voltage-activated (i.e. T-type) Ca2+ channels. The majority of floor plate cells tested also exhibited responses to the neurotransmitter GABA which produced robust inward currents at negative membrane potentials, in chloride-loaded cells. Both the pharmacology and voltage-dependence of the GABA-activated currents indicated they arose from activation of GABA(A) receptors.  相似文献   

17.
We describe, for the first time, a potassium current in acutely isolated mouse pancreatic acinar cells. This current is activated by depolarization and has many of the characteristics of the fast transient potassium current of neurones where roles in shaping action potential duration and frequency have been proposed. Although acinar cells do not carry action potentials, our experiments indicate that the primary regulator of the current in these cells is the membrane potential. In whole-cell patch-clamped cells we demonstrate an outward current activated by depolarization. This current was transient and inactivated over the duration of the pulse (100-500 ms). The decay of the inactivation was adequately fitted by a single exponential. The time constant of decay, tau, at a membrane potential of +20 mV was 34 +/- 0.6 ms (mean +/- SEM, n = 6) and decreased with more positive pulse potentials. The steady-state inactivation kinetics showed that depolarized holding potentials reduced the amplitude of the current observed with a half-maximal inactivation at a membrane potential of -40.6 +/- 0.33 mV (mean +/- SEM, n = 5). These activation and inactivation characteristics were not affected by low intracellular calcium (10(-10) mol.l-1) or by an increase in calcium (up to 180 nmol.l-1). In addition we found no effect on the current of dibutyryl cyclic adenosine monophosphate (db-cAMP) or the agonist acetylcholine. The current was blocked by 4-aminopyridine (Kd approximately 0.5 mmol.l-1) but not affected by 10 mmol.l-1 tetraethylammonium.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
1. The effects of nifedipine on both levcromakalim-induced membrane currents and unitary currents in pig proximal urethra were investigated by use of patch-clamp techniques (conventional whole-cell configuration and cell-attached patches). 2. Nifedipine had a voltage-dependent inhibitory effect on voltage-dependent Ba2+ currents at - 50 mV (Ki=30.6 nM). 3. In current-clamp mode, subsequent application of higher concentrations of nifedipine (> or =30 microM) caused a significant depolarization even after the membrane potential had been hyperpolarized to approximately -82 mV by application of 100 microM levcromakalim. 4. The 100 microM levcromakalim-induced inward current (symmetrical 140 mM K+ conditions, -50 mV) was inhibited by additional application of three different types of Ca antagonists (nifedipine, verapamil and diltiazem, all at 100 microM). In contrast, Bay K 8644 (1 microM) possessed no activating effect on the amplitude of this glibenclamide-sensitive current. 5. When 100 microM nifedipine was included in the pipette solution during conventional whole-cell recording at -50 mV, application of levcromakalim (100 microM) caused a significant inward membrane current which was suppressed by 5 microM glibenclamide. On the other hand, inclusion of 5 microM glibenclamide in the pipette solution prevented levcromakalim from inducing an inward membrane current. 6. The levcromakalim-induced K+ channel openings in cell-attached configuration were suppressed by subsequent application of 5 microM glibenclamide but not of 100 microM nifedipine. 7. These results suggest that in pig proximal urethra, nifedipine inhibits the glibenclamide-sensitive 43 pS K+ channel activity mainly through extracellular blocking actions on the K+ channel itself.  相似文献   

19.
Whole cell voltage-clamp techniques were employed to characterize the sodium (Na) conductances in acutely dissociated, mature guinea-pig cerebellar Purkinje cells. Three phenomenological components were noted: two inactivating and a persistent component (I(P)(Na). All exhibited similar sensitivities to tetrodotoxin (TTX; IC50 approximately 3 nM). The inactivating Na current demonstrates two components with different rates of inactivation. The persistent component activates at a more negative membrane potential than the inactivating components and shows little inactivation during a 5-s pulse. The amplitude of the persistent Na conductance had a higher Q10 than the inactivating Na conductance (2.7 vs. 1.3). (I(P)(Na) rapidly activates (approximately 1 ms) and deactivates (< 0.2 ms) and like the fast component appears to be exclusively Na permeable. (I(P)(Na) is not a "window" current because its range of activation exceeds the small overlap between the steady-state activation and inactivation characteristics of the inactivating current. Anomalous tail currents were observed during voltage pulses above -40 mV after a prepulse above -30 mV. The tails rose to a maximum inward current with a time constant of 1.5 ms and decayed to a persistent inward current with a time constant of 20 ms. The tails probably arose as a result of recovery from inactivation through the open state. The noise characteristics of (I(P)(Na) were anomalous in that the measured variance was lower at threshold voltages than would be predicted by a binomial model. The form of the variance could be partially accounted for by postulating that the maximum probability of activation of the persistent current was less than unity. The noise characteristics of (I(P)(Na) are such as to minimize noise near spike activation threshold and sharpen the threshold.  相似文献   

20.
A voltage-gated K+ conductance resembling that of the human ether-à-go-go-related gene product (HERG) was studied using whole-cell voltage-clamp recording, and found to be the predominant conductance at hyperpolarized potentials in a cell line (MLS-9) derived from primary cultures of rat microglia. Its behavior differed markedly from the classical inward rectifier K+ currents described previously in microglia, but closely resembled HERG currents in cardiac muscle and neuronal tissue. The HERG-like channels opened rapidly on hyperpolarization from 0 mV, and then decayed slowly into an absorbing closed state. The peak K+ conductance-voltage relation was half maximal at -59 mV with a slope factor of 18.6 mV. Availability, assessed by a hyperpolarizing test pulse from different holding potentials, was more steeply voltage dependent, and the midpoint was more positive (-14 vs. -39 mV) when determined by making the holding potential progressively more positive than more negative. The origin of this hysteresis is explored in a companion paper (Pennefather, P.S., W. Zhou, and T.E. DeCoursey. 1998. J. Gen. Physiol. 111:795-805). The pharmacological profile of the current differed from classical inward rectifier but closely resembled HERG. Block by Cs+ or Ba2+ occurred only at millimolar concentrations, La3+ blocked with Ki = approximately 40 microM, and the HERG-selective blocker, E-4031, blocked with Ki = 37 nM. Implications of the presence of HERG-like K+ channels for the ontogeny of microglia are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号