首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this study the specific exergy costing (SPECO) approach is employed on a four-step integrated thermochemical copper-chlorine (Cu Cl) cycle for hydrogen production for a second-law based assessment purposes. The Cu–Cl cycle is considered as one of the most environmentally benign and sustainable options of producing hydrogen and is thus investigated in this study due to its potential of ensuring zero greenhouse gas (GHG) emissions. Several conceptual Cu–Cl cycles have been exergoeconomically examined previously, however this study aims at investigating the four-step integrated Cu–Cl cycle developed at the Clean Energy Research Laboratory (CERL) at the Ontario Tech University thereby contributing to the thermo/exergoeconomic assessments of the thermochemical hydrogen production. In this study, the cycle is first thermodynamically modeled and simulated in a process simulation software (Aspen Plus) through exergy and energy approaches. The basic principles of the SPECO methodology are applied to the system and exergetic cost balances are performed for each cycle component. The exergetic costing of each cycle stream is then performed based on the cost balance equations. The purchased equipment cost and the hourly levelized capital cost rates for each cycle component is also obtained. The exergoeconomic factor, relative cost difference and exergy destruction cost rate for various cycle components are also evaluated. Moreover, the effect of several parameters on the total and hourly levelized capital cost rates is analyzed by performing a comprehensive sensitivity analysis. Based on the analysis, the exergy cost, the unit or specific exergy cost, and the unit costs of hydrogen are evaluated to be 6407.55 $/h, 0.042 $/MJ, and 4.94 $/kg respectively.  相似文献   

2.
A. Diango  C. Perilhon  G. Descombes  E. Danho   《Energy》2011,36(5):2924-2936
In the current context of global warming due to CO2 (carbon dioxide) emissions, mainly produced by power plants and road transportation, it is imperative to optimize the operation of thermal engines in general and of gas turbines in particular. This requires accurate knowledge of their performance. In the case of turbomachines, performance is usually estimated by assuming an adiabatic flow. This assumption is inappropriate, however, for small-scale machines such as turbochargers and micro gas turbines. This study presents the influence of heat transfer on their performance. The concept of entropic temperature is developed and a general exergy analysis conducted in order to quantify accurately the available energy dissipation. Both a turbocharger and a gas turbine with internal heat transfer are investigated. Under the adiabatic assumption, the model results are overestimated. New gas turbine maps have therefore been generated and new operating points defined. The trends of the modeling results thus obtained are compared with the performance measured on a micro gas turbine with and without insulation. Fuel consumption is higher with internal heat transfer.  相似文献   

3.
The aim of this work is to analyze methane-fed internal reforming solid oxide fuel cell–gas turbine (IRSOFC—GT) power generation system based on the first and second law of thermodynamics. Exergy analysis is used to indicate the thermodynamic losses in each unit and to assess the work potentials of the streams of matter and of heat interactions. The system consists of a prereformer, a SOFC stack, a combustor, a turbine, a fuel compressor and air compressor, recuperators and a heat recovery steam generator (HRSG). A parametric study is also performed to evaluate the effect of various parameters such as fuel flow rate, air flow rate, temperature and pressure on system performance.  相似文献   

4.
Splitting the exergy destruction into endogenous/exogenous and unavoidable/avoidable parts represents a new development in the exergy analysis of energy conversion systems. This splitting improves the accuracy of exergy analysis, improves our understanding of the thermodynamic inefficiencies and facilitates the improvement of a system.

An absorption refrigeration machine is used here as an application example. This refrigeration machine represents the most complex type of a refrigeration machine, in which the sum of physical and chemical exergy is used for each material stream.  相似文献   


5.
In this paper, six novel modified exergy relations are explored to determine the precise estimation of exergy destruction and to identify which component has the most improvement potential. For this, three power generation cycles are considered, i.e., simple gas turbine (SGT), recuperated gas turbine (RGT), are compared with a novel hybrid system (SOFC-RGT: Solid Oxide Fuel Cell-RGT), which operates with fuel flexibility as well as enhanced work-output and thermal efficiency. For energy, exergy, and sustainability studies, numerical modeling is conducted using MATLAB. At rp = 4, TIT = 1250 K, an exclusive comparison has been made between proposed configurations based on thermodynamic modeling and exergy-based sustainability index. It is found that with the inclusion of a recuperator and a fuel cell in the proposed cycles, the thermal and sustainability performance tend to increase significantly. Whereas, exergy destruction increases but has minimal impact on comparing thermal performance and sustainability index. In terms of sustainability, RGT is 30.76% more sustainable than SGT, while SOFC-GT is 63.39% more sustainable than RGT.  相似文献   

6.
《能源学会志》2014,87(1):28-34
The model of the hybrid solid oxide fuel cell (SOFC) and gas turbine (GT) cycle is used to evaluate the impacts of the inlet fuel composition on the specific work and efficiency of the cycle. In order to perform the analysis, the system fueled with methane is considered as the reference case. For alternative cases, methane is partially replaced with hydrogen, carbon dioxide, carbon monoxide, and nitrogen with an increment of 5% at each step. The results indicate that the trend of the variations and the magnitude of the changes depend on the replacing gases. The specific work and efficiency of the SOFC, GT, and cycle as a whole for the cycle with and without anode recirculation can increased, decreased, or remain unaffected when methane is replaced with these species. All these trends are justified by investigating the system's operational parameters. This study confirms the importance of the fuel composition impacts on the SOFC–GT cycle performance.  相似文献   

7.
In this paper, a dual-fuel engine test rig with gasoline injected in the intake port and gasoline (or hydrogen) injected directly into the cylinder is built up; therefore, two injection models are realized. One is port fuel injection + gasoline direct injection (PFI + GDI), the other is port fuel injection + hydrogen direct injection (PFI + HDI). And the effects of two injection models on heat and exergy balance are investigated experimentally. The results show that, from the perspective of the first law of thermodynamics (heat balance), no matter what the injection mode is, the heat proportion of cooling water is the largest, the exhaust heat ratio and brake power are the second, which two are roughly equivalent, and the uncounted loss is the least. In PFI + GDI mode, the local mixture is too dense due to the increase of mixing ratio, which leads to insufficient combustion and a slight decrease of brake power ratio. However, due to the special characteristics of hydrogen, the increase of direct injection ratio improves the brake power ratio in PFI + HDI mode. Moreover, because of the short quenching distance of hydrogen, the cooling loss rises up with the increase of hydrogen ratio. The engine speed and load also have great impacts on heat distribution, but on account of the different physical and chemical properties between gasoline and hydrogen, resulting in varying degrees of impact and trends. On the basis of the second law of thermodynamics (exergy balance), it is found that no matter what injection mode is, the ratio of exergy destruction is always the highest, accounting for half of the total fuel energy, and the exhaust exergy ratio is lower than the brake power ratio. However, the proportion of exergy contained in cooling water is the smallest, which is quite different from the result of the first law of thermodynamics. The influences of several factors on engine energy balance are analyzed, and the differences and similarities between heat balance and exergy balance are compared. The two analytical methods are interrelated and complementary, and the purpose is to find a reasonable and comprehensive energy balance analysis method for internal combustion engine.  相似文献   

8.
9.
The present study investigates the application of natural gas/hydrogen blends as an alternative fuel for industrial heat treatment furnaces and their economic potential for decreasing carbon dioxide emissions in this field of application. Doing so, a detailed technological analysis of several influencing parameters on the heating system was performed as well as a consideration of furnace heating technology challenges. Starting with an evaluation of the main thermophysical properties of the blends and their corresponding flue gases, requirements for the heating systems were identified. Potential ways of decreasing flue gas losses and increasing the heat transfer are shown. In the radiant tube application, an increased overall combustion efficiency of about 1.2% was measured at 40 vol% hydrogen in the fuel gas. Influences on the air to gas ratio control system of the furnace is a further important point, which was considered in this study. Two commonly used control systems were evaluated concerning their capabilities to regulate the gas flow rates of blends with varying hydrogen contents and combustion properties, such as Wobbe Index. This is important, since it shows the capability to retrofit existing furnaces. Two types of burners were tested with different natural gas/hydrogen blends. This includes an open jet burner with air-staged and flameless combustion operation modes. A recuperative burner for radiant tube application was considered as well in these tests. Doing so, the nitrogen oxide formation of both systems under different operating conditions and different fuel blends were evaluated. An increase by about 10% at air-staged combustion and about 100% at flameless combustion was measured by a hydrogen content of 40 vol% in comparison to pure natural gas firing. Finally, the additional fuel costs of natural gas hydrogen blends and different cases are presented in an economic analysis. The driving force for the use of hydrogen as a fuel is the price of the CO2 certificates, which are considered in the analysis at a current price of 25.2 €/t CO2.  相似文献   

10.
With the increased concern about energy security, air pollution and global warming, the possibility of using polymer electrolyte fuel cells (PEFCs) in future sustainable and renewable energy systems has achieved considerable momentum. A computational fluid dynamic model describing a straight channel, relevant for water removal inside a PEFC, is devised. A volume of fluid (VOF) approach is employed to investigate the interface resolved two-phase flow behavior inside the gas channel including the gas diffusion layer (GDL) surface. From this study, it is clear that the impact on the two-phase flow pattern for different hydrophobic/hydrophilic characteristics, i.e., contact angles, at the walls and at the GDL surface is significant, compared to a situation where the walls and the interface are neither hydrophobic nor hydrophilic (i.e., 90° contact angle at the walls and also at the GDL surface). A location of the GDL surface liquid inlet in the middle of the gas channel gives droplet formation, while a location at the side of the channel gives corner flow with a convex surface shape (having hydrophilic walls and a hydrophobic GDL interface). Droplet formation only observed when the GDL surface liquid inlet is located in the middle of the channel. The droplet detachment location (along the main flow direction) and the shape of the droplet until detachment are strongly dependent on the size of the liquid inlet at the GDL surface. A smaller liquid inlet at the GDL surface (keeping the mass flow rates constant) gives smaller droplets.  相似文献   

11.
In this study, three medicinal and aromatic plants (Foeniculum vulgare, Malva sylvestris L. and Thymus vulgaris) were dried in a pilot scale gas engine driven heat pump drier, which was designed, constructed and installed in Ege University, Izmir, Turkey. Drying experiments were performed at an air temperature of 45 °C with an air velocity of 1 m/s. In this work, the performance of the drier along with its main components is evaluated using exergy analysis method. The most important component for improving the system efficiency is found to be the gas engine, followed by the exhaust air heat exchanger for the drying system. An exergy loss and flow diagram (the so-called Grassmann diagram) of the whole drying system is also presented to give quantitative information regarding the proportion of the exergy input dissipated in the various system components, while the sustainability index values for the system components are calculated to indicate how sustainability is affected by changing the exergy efficiency of a process. Gas engine, expansion valve and drying ducts account for more than 60% amount of exergy in the system. The exergetic efficiency values are in the range of 77.68–79.21% for the heat pump unit, 39.26–43.24% for the gas engine driven heat pump unit, 81.29–81.56% for the drying chamber and 48.24–51.28% for the overall drying system.  相似文献   

12.
Demand for the clean and sustainable energy encourages the research and development in the efficient production and utilisation of syngas for low-carbon power and heating/cooling applications. However, diversity in the chemical composition of syngas, resulting due to its flexible production process and feedstock, often poses a significant challenge for the design and operation of an effective combustion system. To address this, the research presented in this paper is particularly focused on an in-depth understanding of the heat generation and emission formation of syngas/producer gas flames with an effect of the fuel compositions. The heat generated by flame not only depends on the flame temperature but also on the chemistry heat release of fuel and flame dimension. The study reports that the syngas/producer gas with a low H2:CO maximises the heat generation, nevertheless the higher emission rate of CO2 is inevitable. The generated heat flux at H2:CO = 3:1, 1:1, and 1:3 is found to be 222, 432 and 538 W m-2 respectively. At the same amount of heat generated, H2 concentration in fuel dominates the emission of NOx. The addition of CH4 into the syngas/producer gas with H2:CO = 1:1 also increases the heat generation significantly (e.g. 614 W m-2 at 20%) while decreases the emission formation. In contrast, adding 20% CO2 and N2 to the syngas/producer gas composition reduces the heat generation from 432 W m-2 to 364 and 290 W m-2, respectively. The role of CO2 on this aspect, which is weaker than N2, thus suggests CO2 is preferable than N2. Along with the study, the significant role of CO2 on the radiation of heat and the reduction of emission are examined.  相似文献   

13.
The optimization of the heat recovery steam generator (HRSG) is one of the key elements for increasing the efficiency of combined plants. According to the current technical practice, it can be organized at different levels of complexity with objectives sequentially defined: operating parameters, geometrical details and technological elements.

According to this point of view, in the paper a complete strategy for the optimum design of the HRSG is outlined. The optimization is organized at two levels: the first one enables to obtain the main operating parameters of the HRSG, while the second involves the detailed design of the component concerning the geometric variables of the heat transfer sections. The output of the first-level optimization is the input of the second level. In particular, the second level of the optimization can be articulated in two different steps. The first step can be aimed to the minimization of the pressure drop for a given heat flow. The second step leads to a reduction of the overall dimensions, maintaining the imposed performance of the HRSG in terms of heat flow and pressure drop. The whole procedure is tested with reference to a case of existing HRSG structures; it shows the possibility of improving performance maintaining a constrained packaged size.  相似文献   


14.
The paper presents results of experimental research on a dual-fuel engine powered by diesel fuel and natural gas enriched with hydrogen. The authors attempted to replace CNG with hydrogen fuel as much as possible with a constant dose of diesel fuel of 10% of energy fraction. The tests were carried out for constant engine load of IMEP = 0.7 MPa and a rotational speed of n = 1500 rpm. The effect of hydrogen on combustion, heat release, combustion stability and exhaust emissions was analyzed. In the test engine, the limit of hydrogen energy fraction was 19%. The increase in the fraction caused an increase in the cycle-by-cycle variation and the occurrence of engine knocking. It was shown that the enrichment of CNG with hydrogen allows for the improvement in the combustion process compared to the co-combustion of diesel fuel with non-enriched CNG, where the reduction in the duration of combustion by 30% and shortening the time of achieving 50% of MFB by 50% were obtained. The evaluation of the spread of the end of combustion is also presented. For H2 energetic share over 20%, the spread of end of combustion was 48° of crank angle. Measurement of exhaust emissions during the tests revealed an increase in THC and NOx emissions.  相似文献   

15.
Various implementations of the exponential wide band model (EWBM) are used to model radiative heat transfer in one- and two-dimensional enclosures containing CO2 and H2O. These are, first, the original banded approach using the four-region approximation for the total band absorption, second, a numerical integration of the spectral transmittance, and third, the wide band correlated k-distribution method (CKM). A correlated and a non-correlated formulation are used to solve the radiative transfer equation. In two-dimensional enclosures, these formulations are implemented using a ray tracing method (RTM) and the discrete ordinates method (DOM), respectively. The wide band CKM is found to be the best choice concerning accuracy and computational effort.  相似文献   

16.
This paper presents a very detailed finite volume axial-symmetric model of a tubular internal reforming solid oxide fuel cells (SOFCs), in which the effects of heat/mass transfer and chemical/electrochemical reactions are included. The model allows one to predict the performance of a single SOFC tube once a series of design and operative parameters are fixed, but also to investigate the source and localization of inefficiency. To this scope, an exergy analysis was implemented.  相似文献   

17.
Microfluidic fuel cells (MFCs) are novel systems that satisfy the critical requirements of having small dimensions and substantial power output for use in portable devices. In this study, three-dimensional mathematical models of two types of MFCs (flow-over and flow-through) are developed, by coupling multiphysics consisting of microfluidic hydrodynamics, electrochemical reaction kinetics, and species transport of fluid. Moreover, gravity, exergy, and parametric sensitivity are studied, which have tremendous impact on fuel cell performance and have been frequently overlooked in previous literature. The reliability of the numerical model is demonstrated by the excellent consistency between simulation results and experimental data. First, a parametric analysis is conducted, which includes the design parameters and gravity effect. Following this, the fuel utilization and exergy efficiency are calculated for various design parameters. Finally, a sensitivity analysis is performed to evaluate the influence of the indicators on the cell performance. It is shown that a relatively stable performance is achieved with the flow-through MFC under interference from the external environment. The reactive sites of the flow-through MFC can be utilised effectively, whereas further promotion of the flow-over MFC is limited by its inherent drawback. In addition, the sensitivity analysis reveals that cell performance depends strongly on the flow rate and fuel concentration. The results can be beneficial for the investigation of cell performance optimization.  相似文献   

18.
Theoretical investigations of fatty acids as a phase change material (PCM) for energy storage system have been conducted in this study. The selected fatty acids were capric acid, lauric acid, myristic acid, palmitic acid and stearic acid. For the two-dimensional simulation model based on the enthalpy approach, calculations have been made for the melt fraction with conduction only. Glass, stainless steel, tin, aluminium mixed, aluminium and copper were used as heat exchanger materials in the numerical calculations. Theoretical results show that capric acid was found good compatibility with latent heat storage system. The large value of thermal conductivity of heat exchanger materials did not make significant contribution on the melt fraction.  相似文献   

19.
In order to achieve ultra-low emissions of both NOX and CO it is imperative to use a homogeneous premixed combustor. To lower the emissions further, the equivalence ratio can be lowered. By doing so, combustion is moved towards the lean blowout (LBO) limit. To improve the blowout characteristics of a burner, heat and radicals can be supplied to the flame zone. This can be achieved using a pre-chamber combustor. In this study, a central body burner, called the RPL (rich-pilot-lean) section, was used as a pre-chamber combustor to supply heat and radicals to a downscaled industrial burner. The flue gas from the RPL is mixed with the surrounding fresh mixture and form a second flame zone. This zone acts as a stabilizer for the investigated burner. The LBO limit was modeled using two perfectly stirred reactors (PSRs) in series, which allows the chemical influence on the LBO limit to be isolated. The resulting trends for the modeled LBO limit were in agreement with measured data. Increasing the equivalence ratio in the RPL section, thus increasing the energy supplied by the fuel, is a major contributor to combustion stability up to a limit where the temperature decrease is too large support combustion. For lean RPL combustion, the reactive species O, H and OH in combination affect the stability to a greater extent than the temperature alone. At rich equivalence ratios, the conversion of methane to hydrogen and carbon monoxide in the RPL section is a factor influencing the LBO limit. The results are compared with emission probe measurements that were used to investigate the LBO limit for methane and a generic syngas (10% CH4, 67.5% H2, and 22.5% CO). The syngas was also investigated after being diluted with nitrogen to a Wobbe index of 15 MJ/m3.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号