共查询到20条相似文献,搜索用时 0 毫秒
1.
基于将氧化钼代替钼铁加入AOD炉中生产316L不锈钢的新思路,分析了AOD炉熔池中主要元素还原氧化钼的热力学和氧化钼还原机理并推导出其还原速率公式,讨论了AOD炉冶炼过程中氧化钼加入方式,介绍了将氧化钼置于AOD炉中冶炼316L不锈钢钢液的工业实践。结果表明:氧化钼在AOD中有很好的还原条件,在加入AOD炉后的半小时之内能够完全还原;氧化钼应该以复合球团(氧化钼、还原剂和抑制剂混合造球)的形式加入AOD炉中,保证冶炼正常进行的同时最大限度提高钼资源的利用效率。实际生产状况良好,达到了预期的效果。 相似文献
2.
3.
通过FactSage热力学计算软件和实验室实验研究了在常压和真空条件下温度、氮分压和碳含量对316L不锈钢中氮溶解度的影响.结果表明:钢中氮的溶解度随着温度的降低而升高,随着氮分压的增大而增大,随着钢液碳含量的增加而减少,其中氮分压对钢液氮溶解度的影响最大.不同吹氮条件下氮溶解度实测值与FactSage热力学软件计算值较吻合.生产控氮型316L不锈钢可以在吹氧脱碳阶段实现,生产氮质量分数大于0.10%的中氮型316L不锈钢,只能在氮分压大于30kPa的加料阶段以及破真空后大气微调阶段实现. 相似文献
4.
5.
6.
本文探讨的氧化钼代替铁合金化的理论,并经过实践认为三氧化钼比二氧化钼收得率高,比钼铁提高约8%,每吨氧化钼可使企业获2792元效益。 相似文献
7.
用0.8 kg钢水石墨坩埚的硅钼棒炉研究了常压下氮气分压(33~100 kPa) 、吹氮时间(0~50 min) 、吹氮流量(0.3 L/min) 、钢液温度(1 773~1 833 K)对316L钢(%:0.031C、16.13Cr、10.12Ni、2.12Mo、0·028N)中氮含量的影响,并试验了在前期真空条件下1 853~1 833 K吹氮40 min、2 kPa、0.1 L/min,中期吹氮40 min、100 kPa、0.3 L/min,后期吹氮50 min、100 kPa、自然冷却至1 773 K时316L钢水的增氮行为。结果表明,钢中氮含量随着吹氮时间、氮分压的增加而增大,常压下吹氮10 min,钢液含氮量即可超过0.10%,随吹氮流量增加钢液达到饱和的时间缩短,氮的溶解度随着钢液温度的降低而升高。应用热力学和动力学模型进行了分析。 相似文献
8.
9.
王贵平 《不锈(市场与信息)》2010,(3):26-28
磨蚀是一种机械磨损行为,对石油和石化工业来说并不是新问题,当流体中有固体颗粒存在或流体流速超过1m/s(或3.3ft/s)时都会发生。为探索这种现象的复杂本质并了解产生的机理,己开展且仍在进行着大量研究。被广泛接受的最浅显的论述是,碰撞到管壁的颗粒最先去掉了金属表面的沉积物和/或保护层,使新的金属表面暴露在腐蚀性环境中,从而加快了腐蚀速率。 相似文献
10.
《特殊钢》2017,(3)
根据双膜理论,建立了不锈钢精炼中向钢水吹氮气合金化过程的动力学模型。通过硅钼棒炉研究了恒压(101 kPa),恒温(1 833 K)和恒流量(0.3 L/min)时316L不锈钢(/%:0.031C,0.57Si,1.00Mn,0.021P,0.004S,16.13Cr,10.12N,2.12Mo,0.028N)吹氮时间(0~70 min),氮分压(N_2:Ar=2:1,1:2和1:1)和温度(1 773~1 833K)对该钢氮合金化的影响。结果表明,钢中氮含量随着吹氮时间、氮分压的增加而增加,随吹氮流量增加钢液氮含量达到饱和的时间缩短,氮的溶解度随着钢液温度的降低而升高,合适的钢水温度为~1 500℃。120 t VOD 316L不锈钢工业生产试验表明,在氮气流量42×3 m~3/h时,VOD真空阶段吹氮合金化,钢中的氮含量可达0.04%。 相似文献
11.
采用氧化钼代替钼铁直接合金化冶炼含钼钢可减少钼铁生产流程、降低成本,但氧化钼的高温挥发特性阻碍了氧化钼直接合金化技术的应用。为保证转炉采用氧化钼合金化过程取得较高的钼收得率,研究了转炉吹炼不同阶段氧化钼还原反应的热力学机理,发现炼钢温度下金属液中各元素可作为还原剂与氧化钼产生还原反应,吹炼前中期熔池中还原剂含量高,氧化钼挥发率低,此时加入氧化钼可获得较高的钼收得率。分析了氧化钼反应动力学环节,发现反应限制性环节为还原剂向氧化钼表面的扩散。在此基础上进行了高温试验,结果表明氧化钼合金化的冶金效果优于钼铁,吹炼前中期金属液中[C]、[Si]含量较高,此时进行氧化钼合金化钼收得率在95%以上。对成品钢中的夹杂物进行了分析,夹杂物主要为硫化物和氧化铝,采用氧化钼合金化不会增加钢中夹杂物。研究结果为炼钢过程采用氧化钼直接合金化冶炼含钼钢提供了理论和技术支撑。 相似文献
12.
基于直接还原理论,对高碳铬铁和氧化钼直接合金化冶炼过程进行了热力学分析。在共同作用理论基础上,建立了CaO-SiO2-FeO-MoO3-Cr2O3渣系活度计算模型,分析了铁液和熔渣中各组元活度及对氧化钼直接还原合金化过程的影响。结果表明:在高碳铬铁铁液中饱和[C]和外配还原剂焦炭的作用下,将氧化钼直接合金化得到一种碳素铬钼铁合金是完全可行的。MoO3在熔渣中活度很小,还原率高;高碳铁液中C、Cr元素有效降低了合金中Mo的活度,保证了Mo具有较高收得率,为铬钼铁合金的冶炼提供了理论依据。 相似文献
13.
14.
15.
16.
17.
铬矿直接还原合金化冶炼不锈钢的研究 总被引:2,自引:0,他引:2
通过平衡和模拟试验,探明了铬矿直接合金化时,铬的还原速度与渣成分、温度、Ar气搅拌以及矿粒度、加入方式等的关系。由模拟转炉复合吹炼试验,在45min内可使[Cr]从零增至13%。 相似文献
18.
采用自行设计制造的18m高落锤式高速压机,研究316L不锈钢粉末的高速压制行为.实验结果表明,冲击速度增大可有效提高生坯密度,对室温粉末进行高速压制,当冲击速度从10 m/s提高到18m/s时,生坯密度从7.18 g/cm3提高到7.61 g/cm3.而在同样冲击速度下,对160℃温粉末进行高速压制时,生坯密度从7.33 g/cm3提高到7.76 g/cm3.同时生坯强度随冲击速度的提高而升高,冲击速度从10 m/s提高到18m/s时,160℃压制的生坯强度从72.5 MPa提高到94.1 MPa,室温压制生坯强度从62.1MPa提高到89.3MPa.通过对生坯SEM照片的分析,得知高速压制过程中粉末会发生严重的塑性变形和碎裂现象,孔隙的形状也会发生改变.该文还对高速压制致密化机理进行了探讨,指出在较高的速度压制时,颗粒间的摩擦和绝热剪切作用使粉末颗粒界面的温度升高,有利于粉末颗粒的塑性变形和焊合,从而有效提高了生坯的密度. 相似文献