首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
针对微逆变器中存在的二次功率扰动问题,提出了一种新型四开关功率解耦电路。详细分析了基于Buck/Boost电路的新型功率解耦电路的4种工作模式,推导了采用脉冲能量调制控制策略原理,并对电路关键参数进行设计。该电路并联在逆变器交流输出侧,不仅能够明显抑制母线电压和直流输入侧电流中的二次纹波,而且可以将大电解电容替换成小容量长寿命的薄膜电容。最后,仿真实验验证了该拓扑的有效性和合理性。  相似文献   

2.
针对微逆变器二倍频功率扰动问题,提出了一种交流侧泛Buck-boost功率解耦技术。设计的四种能实现能量双向流动的解耦电路均并联在逆变器交流侧,不同拓扑都可等效工作在Buck、Boost或Buck-boost的模式中。从拓扑结构、工作模式及解耦性能三方面分析了设计的四个解耦电路,以及每种拓扑抑制二次谐波的能力。讨论了脉冲能量缓冲的计算方法。仿真结果表明,三模态六开关Buck-boost功率解耦电路抑制电压二次谐波效果最优,单模态六开关Buck-boost功率解耦电路抑制电流二次谐波效果最优。泛Buck-boost功率解耦技术可以在不依赖母线大电压情况下,大幅降低解耦电容容值,实现无电解电容,提高微逆变器可靠性并延长其使用寿命。  相似文献   

3.
针对两级式单相逆变器常用大容量电解电容来缓冲其固有的二倍频脉动功率,大大降低其耐用性和可靠性这一问题,本文在保证变换器稳定运行的前提下提出了一种四开关功率解耦电路,对降低逆变器电容总容值具有实际工程意义。分析讨论解耦电路的工作原理,通过对4种不同的工作模式进行分析,从而确定解耦主电路各个开关管开关时序。在此基础上,设计了相应的脉冲能量调制策略以实现瞬时能量的精准补偿,提升了四开关功率解耦电路的解耦性能,改善了两级式逆变器交直流侧波形质量。该方案逆变电路与功率解耦电路相互独立,有利于传统设备的改造。最后,搭建了仿真模型和实验样机,仿真和实验结果验证了增加交流侧四开关功率解耦电路后,变换器只需几十μF的薄膜电容就能对二倍频脉动功率进行有效解耦。  相似文献   

4.
提出一种并联在逆变器交流输出端的单模态六开关Buck-Boost功率耦合电路,以缓冲传统光伏微逆变器中的二次功率脉动。分析了功率耦合电路的四种不同工作模式,主控开关均采用脉冲能量调制(pulse energy modulation,PEM)信号控制。推导了一个开关周期内不同工作模式下的PEM信号占空比以及耦合电感电流给定值的表达式,用以得到相应的PEM信号脉冲。设计了耦合电感和电容的参数。建立Simulink仿真模型,仿真结果表明,该功率耦合电路不仅能抑制光伏微逆变器直流侧输入电流和母线电压中的二次纹波,而且利用交流输出端电压变化范围大的特点,大大降低耦合电容容值,避免使用短寿命的大电解电容,提高了光伏微逆变器的使用寿命和可靠性。  相似文献   

5.
宫昆鹏 《电工技术》2021,(24):136-139
在单相光伏并网逆变器中,若要逆变器交流侧瞬时功率满足并网的需要,则在逆变器直流侧会产生不平衡脉动功率和二阶纹波电流,影响直流输入源利用率.为了减小直流侧的二次纹波,一般并联大容量的电解电容器,但电解电容器体积大且寿命较短.介绍了一种带有功率解耦电路的单相升降压逆变器,采用基于脉冲能量调制的有源功率解耦控制,将二阶纹波功率输送到薄膜电容,实现功率解耦.最后仿真验证了升降压逆变器功率解耦的有效性.  相似文献   

6.
提出一种交流侧并联功率解耦电路的无电解电容光伏逆变器。该光伏逆变器主电路采用电压型H桥,功率解耦电路采用一种七开关双向变换器结构,并联在逆变器交流输出侧。H桥变换器采用电流滞环控制以实现交流并网,功率解耦电路采用基于脉冲能量的控制方式,即根据每个开关周期需要解耦的能量大小计算功率开关的占空比。功率解耦电路采用峰值电流控制,从而加大解耦电容上电压纹波,降低解耦电容器容值,以实现无电解电容的目的。分析了并联功率解耦电路的四个工作模式,讨论了解耦电感和电容的参数设计。建立了提出的无电解电容光伏逆变器的Matlab仿真模型以验证其有效性。仿真结果表明,提出的功率解耦电路解耦电容的容值降低到几十μF,可实现无电解电容器的光伏逆变器,从而延长光伏逆变器的使用寿命。  相似文献   

7.
双Boost单相逆变器并网控制策略   总被引:1,自引:1,他引:0  
双Boost单相逆变器能够实现单级升压逆变,适用于分布式能源并网发电领域。针对其并网控制策略难以兼顾高性能的动态响应特性以及交直流侧电能质量的问题,在分析双Boost单相逆变器并网工作原理、功率解耦以及谐振机理的基础上,提出了一种由单并网电流环、功率解耦和有源阻尼组成且具有对称结构的并网控制策略,分析并介绍了各部分控制原理。最后,仿真和实验结果表明,所提控制策略具有动态响应速度快、并网电流质量高、直流侧无二次功率脉动等优点。  相似文献   

8.
一种用于光伏逆变器的新型功率解耦电路   总被引:1,自引:0,他引:1  
提出了一种用于光伏逆变器的新型功率解耦电路。其中,两个解耦电容的电压叠加起来以提供直流母线电压,一个双向Buck/Boost变换器连接在两个解耦电容之间,使得能量可以在两个解耦电容之间双向传递。本文对新型功率解耦电路的工作原理进行了详细分析,给出了解耦电容的参数设计,解耦电路的控制策略以及功率解耦电容平均电压的控制方法。利用Saber软件对所提出的功率解耦电路进行仿真研究。仿真结果表明所提出的功率解耦电路及其控制策略可以在实现功率解耦功能的同时降低解耦电容的容量和耐压。  相似文献   

9.
LLC型单相单级车载充电器(OBC)在效率和成本方面具有一定优势,但其在输出侧存在二倍工频纹波,影响电池寿命.常用电容法会影响OBC的寿命和功率密度,因此针对LLC型OBC,研究了一种采用三环控制的双向Buck/Boost型有源功率解耦电路.针对功率解耦电路设计了一种电感电流反馈内环、电容电压外环配合电池充电电流环共同控制的三环控制器,实现对电池充电电流二倍频分量的有效抑制,最后搭建了实验样机并进行了验证.  相似文献   

10.
提出了一种并联补偿控制策略,应用于功率解耦型无电解电容功率因数校正(PFC)电路,实现了去除电解电容、提高使用寿命和可靠性的目的。首先以升压型双向Buck/Boost变换器作为功率解耦电路,提出了基于固定占空比的并联补偿控制策略,并对其补偿特性进行了分析。而后在定占空比控制策略基础上提出了一种并联补偿控制策略,该控制策略相比较于传统的控制策略,结构简单、实现容易,而且响应速度快,系统调整时间短,负载电压纹波对负载功率变化不敏感,可实现无传感器的低成本功率解耦。为了进一步减小功率器件耐压,将降压型双向Buck/Boost变换器引入功率解耦方案,应用该文所提出的控制策略进行控制,同样实现了PFC电路去除电解电容的目的。最后对该文所提出的并联补偿控制策略进行仿真和实验研究,结果验证了该控制策略的有效性。  相似文献   

11.
采用电解电容抑制单相功率因数校正PFC(power factor correction)输出母线电压波动的方式受到电解电容本身寿命短、体积大等因素限制,难以做到高功率密度以及长时间稳定性。因此,提出一种采用双向升降压电路实现输出母线功率解耦的策略,从而可移除母线处的电解电容。详细分析了解耦电路的基本工作状态,并基于相关参数的设计考虑提出一种新型控制方案,在双闭环的基础上引入输出母线电压波动加权控制,进一步增加在功率解耦支路与输出母线之间转移的脉动功率,减小母线电压纹波,实验结果验证该电路及控制方案的有效性。  相似文献   

12.
为解决LED驱动电源寿命短的问题,提出一种PFC+Buck/Boost的无电解电容LED驱动电源方案。PFC采用常用的Boost型电路结构,控制方法采用简单的CRM控制方式,Buck-Boost双向变换器与LED负载并联,替代电解电容器实现电源交流输入侧和直流输出侧的瞬时功率不平衡的功率耦合功能。设计了PFC的CRM控制策略和双向变换器的固定占空比控制策略,建立了Saber仿真实验模型。仿真研究结果表明,该电路的功率因数达到0.9以上,输出电流和输出电压具有很好的稳定性。  相似文献   

13.
针对DC/DC变换器的滤波电容器老化的预测,首先推导DC/DC变换器滤波电容器的等效模型,然后推导DC/DC变换器的等效串联电阻等效电路,进而提出一种预测滤波电容器老化的方法,将负载电压依次通过带通滤波器、均方根模块和低通滤波器处理,最后根据输出的响应规律分析电容器老化情况。Buck变换器、Boost变换器和Buck-Boost变换器的仿真结果都表明该预测方法不仅能预测DC/DC变换器滤波电容器老化的情况,还能估算出电容老化导致故障产生时的临界状态,表明该预测方法具有可行性。  相似文献   

14.
电力电子电路作为开关型功率变换器,其离散事件与连续时间动态特性相互作用,使其呈现混杂系统的动态特征。给出电力电子电路基于混杂系统的统一模型,并在此模型的基础上提出一种能应用于故障诊断的参数辨识法。建立Buck、Boost、Buck-Boost、Cuk、反激式直流变换、正激式直流变换等6种 DC/DC电路的混杂系统模型,并且上述模型兼顾了电感电流运行在连续导通模式(CCM)和断续导通模式(DCM)。基于上述模型,以Buck电路为例,给出应用最小二乘算法对该模型的参数进行辨识的方法。通过 Buck电路的滤波电感、滤波电容和电容 ESR的辨识实验验证了这一方法的有效性。  相似文献   

15.
刘悦新  王磊 《电源学报》2016,14(5):157-165
非隔离型交错并联双向Buck/Boost变换器普遍存在轻载效率低的难题。以多相交错并联Buck/Boost变换器Boost模式为研究对象,分别对其工作在DCM和CCM模式下的功率损耗进行综合性分析研究。根据变换器轻载运行时降低频率可以提高效率的原则,提出最优化调频原则,对其不同负载下开关频率进行调整,以达到提高效率的目的。针对降低频率会带来纹波恶化的缺陷,将磁集成技术应用到交错并联双向Buck/Boost变换器,有效改善通道电感电流纹波及输出电压纹波,并给出磁集成后滤波电容优化设计原则,以最大程度减小损耗,提高轻载效率。最后通过仿真和实验验证了理论分析的正确性,为交错并联双向Buck/Boost变换器轻载效率优化提供了新的理论依据,推动了全负载高效率双向Buck/Boost变换器的设计实现。  相似文献   

16.
The present paper introduces a single‐phase utility interactive inverter with a power decoupling function. In a conventional single‐phase inverter, power pulsation at twice the grid frequency appears in the input power. Hence, electrolytic capacitors having large capacitances have been connected to the DC input terminal to stabilize the input DC‐bus voltage. Because the lifetime of the electrolytic capacitor is relatively shorter than that of another component, the lifetime of the inverter is affected by the capacitor. In order to prevent such a problem, a novel single‐phase inverter circuit with an active power decoupling function is introduced. The pulsating power on the input DC‐bus line and the pulsated energy on the input DC capacitor is transferred to the energy in a small film capacitor. Hence, the extension of the inverter lifetime can be expected by substituting a small film capacitor for the large electrolytic capacitors. In addition, the loss in the power decoupling circuit is very small; hence, the reduction in the overall conversion efficiency of the inverter can be minimized. The effectiveness of the proposed method is verified using a 300 W experimental setup.  相似文献   

17.
以单相单周期控制Boost结构有源功率因数校正电路为研究对象,分析了有源功率因数校正技术的基本原理,并对其稳定性进行数学分析,同时推导出了单周期控制方程.基于IR1150控制芯片,用简单的电路实现该控制,因无需乘法器和检测输入电压电路,简化了电路.针对300 W实际样机,对整个功率因数校正电路的高频输入电容、Boost...  相似文献   

18.
针对Buck-Boost矩阵变换器实际输出电压与其参考电压间存在较大跟踪误差的问题,提出一种基于重复控制的复合控制策略。阐述了该控制策略的基本原理,构建了以Buck-Boost矩阵变换器中电容电压与电感电流为系统控制变量的复合控制闭环,并就该控制闭环中复合控制器的具体设计方法进行了深入研究,最后构建仿真模型对其控制效果进行了验证,同时与比传统双闭环控制策略进行了对比仿真分析,结果表明:该控制策略不仅有效解决了Buck-Boost矩阵变换器存在的稳态跟踪误差大的问题,而且具有比传统双闭环控制策略更加优良的谐波抑制能力,因而具有更好的应用价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号