首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 46 毫秒
1.
液压系统作为控制和动力传输设备的核心部件,在现代工业生产机械中被广泛应用,准确诊断其故障具有提高生产效率和保障工作安全性等重要的工程意义。液压系统一旦发生故障往往是多故障同时出现,传统BP神经网络故障诊断算法往往不能满足多故障诊断准确率,提出一种基于遗传算法改进BP神经网络(GA-BP)的液压系统故障诊断方法,针对不同采样频率下多传感器信息融合的液压系统3种典型的故障模式进行对比分析。结果表明:GA-BP故障诊断算法相对于传统的BP神经网络具有更好的诊断性能。  相似文献   

2.
徐卫晓  谭继文  文妍 《机床与液压》2014,42(23):188-191
针对单一传感器对滚动轴承故障信息的识别具有不确定性的缺陷,提出了基于BP神经网络与D?S证据理论的多传感器信息融合的方法。将BP神经网络的输出结果进行归一化处理作为各焦元的基本概率分配,轴承的5种故障类型作为系统的识别框架,根据Dempster合成法则进行决策级融合。试验结果表明,利用该方法对轴承的内圈磨损、外圈磨损、滚珠磨损等故障进行试验诊断,提高了故障诊断的准确率,验证了该方法的可行性。  相似文献   

3.

早期滚动轴承故障较难诊断,且特征模式分解(FMD)输入参数滤波器长度L和模态分量个数n较难准确选择。因此,提出基于鹈鹕优化算法(POA)优化FMD参数的滚动轴承早期故障诊断方法。该方法以全体峭度的指标作为适应度函数,通过POA优化算法获取FMD优良参数组合,并且结合包络谱分析实现故障诊断。使用该方法对滚动轴承早期故障仿真信号和实验信号进行分析,结果表明:该方法通过优化FMD参数,可以从包络谱中得到故障特征频率及其倍频突出的幅值,进而诊断出滚动轴承早期故障类别;与基于固有时间尺度分解(ITD)和基于最小熵解卷积(MED)方法相比,包络谱中的故障特征频率及其倍频幅值更突出,在滚动轴承早期故障诊断中具有一定的应用前景和价值。

  相似文献   

4.
根据滚动轴承振动信号的频域变化特征,采用小波包分析对其建立频域能量特征向量,利用径向基函数神经网络完成滚动轴承故障状态的识别.理论和试验证明了该方法的有效性和实用性.  相似文献   

5.
针对航空发动机液压管路故障信号易受噪声干扰、管路故障诊断准确率不高等问题,提出基于优化变分模态分解和BP神经网络的故障诊断方法。利用遗传算法自适应确定变分模态分解K、α的最优参数,然后采用优化后的变分模态分解方法对航空液压管路的振动信号进行分解,最后将故障特征明显的故障分量输入BP神经网络模型中进行训练和分类。结果表明:提出的基于变分模态分解与BP神经网络的航空液压管路故障诊断方法能够精准识别出航空液压管路多种不同的故障状态。  相似文献   

6.
邵建浩  张婷 《机床与液压》2022,50(14):166-170
以SCARA机器人为研究对象,在ADAMS软件中建立SCARA机器人模型,进行仿真。采集SCARA机器人大臂前后端、小臂前后端及底座等容易出现裂纹部位的加速度数据;在MATLAB中运用BP神经网络建立SCARA机器人故障诊断模型,实现利用BP神经网络对SCARA机器人故障进行智能识别与分类。结果表明:BP神经网络的计算结果与期望输出基本一致,验证了其准确性及可靠性。  相似文献   

7.
基于BP神经网络的液压系统故障诊断专家系统   总被引:6,自引:3,他引:6  
江丽  甄少华 《机床与液压》2002,(4):169-170,225
本文尝试将BP神经网络应用于液压系统的故障诊断,阐述了基于BP神经网络的故障诊断专家系统的基本结构,以及知识库,正向推理机和解释机的实现方法。  相似文献   

8.
李祯  李彦平  孙萍  张凤赐  张娜 《机床与液压》2012,40(7):194-196,203
在浆体管道输送系统中,受设备成本、安装难度等因素的限制,往往安装的测量仪表较少,从而导致可测变量偏少,且变量之间存在非线性关系,难以建立精确的数学模型,给故障诊断带来很大困难。通过MATLAB神经网络工具箱构建BP神经网络,利用离线数据对网络进行训练,将训练好的BP网络应用到浆体管道输送系统故障诊断中,有效地实现了两种典型故障的诊断。  相似文献   

9.
张超  秦敏敏  张少飞 《机床与液压》2022,50(16):169-173
在滚动轴承故障自动分类的研究中,使用传统的机器学习方法需要通过手动提取特征,因此特征的提取并不充分且自适应性不强。针对以上问题,提出一种一维卷积神经网络(1D CNN)结合XGBoost算法的单通道滚动轴承故障分类模型。该模型结合1D CNN和XGBoost的优势,对采集到的轴承振动信号进行数据集划分;使用训练集对1D CNN进行训练,把训练好的1D CNN模型进行保存并用来实现轴承数据特征的自动提取;将提取的特征数据集代入XGBoost算法中进行训练和分类。为验证所提模型的有效性,使用凯斯西储大学轴承数据中心提供的数据对1D CNN模型、XGBoost模型和1D CNN-XGBoost模型进行实验对比;为验证1D CNN-XGBoost的泛化性,使用一组新的滚动轴承数据集进行实验。结果表明:1D CNN-XGBoost模型的分类准确率更高,是一种有效的轴承故障分类模型,具有很好地分类性能和泛化性。  相似文献   

10.
武器火控系统广泛采用PLC控制系统。首先根据火控系统工作流程建立故障诊断模型,然后详细介绍了BP神经网络的原理及如何在武器火控系统故障诊断中应用,特别是故障诊断中BP神经网络结构和故障诊断训练样本的确定方法。最后根据上述分析建立火控系统故障诊断实例。实践表明,应用BP神经网络算法后故障诊断系统的诊断准确率达到90%以上,该方法具有一定的参考及实用价值。  相似文献   

11.
考虑到轴承故障难以诊断的问题,提出AdaBoost算法组合遗传算法优化的BP神经网络(GABP-AdaBoost)的诊断模型。利用遗传算法寻优能力对BP网络的权值与阈值进行优化,并用AdaBoost算法进行组合;采用UCI标准数据集对GABP-AdaBoost算法中的关键参数进行分析,并设置最优参数;用最小二乘法和指数平滑法消除轴承振动信号中的漂移和微弱噪声,并用因子分析法选择最优时域参数;使用GABP-AdaBoost算法对轴承故障样本进行诊断,并将GABP、BP、BP-AdaBoost作为对比算法。重复试验30次的结果表明:GABP-AdaBoost算法诊断效果达到90%以上但诊断时间较长;BP-AdaBoost算法诊断效果优于GABP且耗时较少;GABP-AdaBoost算法与BP-AdaBoost算法对重复诊断的波动敏感程度较低。  相似文献   

12.
针对滚动轴承故障识别问题,基于遗传算法(GA)和BP神经网络等技术,提出一种GA-BP神经网络模型。该模型以训练数据的输出误差作为目标函数,利用遗传算法对BP神经网络的初始权值和阈值进行优化选择。将经验模态分解能量比和时域特征相结合的特征向量作为BP神经网络的输入,对滚动轴承不同工况下的故障进行识别。滚动轴承故障诊断的实例表明:该模型较传统BP神经网络模型具有更好的收敛精度、收敛速度和识别率。  相似文献   

13.
为了提高民航发动机滚动轴承故障诊断正确率,提出基于改进天牛须搜索算法优化Elman神经网络的诊断模型.针对天牛须搜索算法易早熟等缺陷,对天牛质心位置和步长更新操作进行改进,并用改进算法优化Elman网络的学习率、 权重和阈值.使用IBAS-Elman模型对滚动轴承故障和正常状态进行诊断,并分析Elman网络延迟向量比例...  相似文献   

14.
刘自然  李谦  颜丙生  尚坤 《机床与液压》2020,48(23):208-213
针对目前机械设备故障数据量大、多样性且主要采用监督式学习提取故障特征的现状,提出一种堆叠稀疏自编码深度神经网络,实现无监督学习提取振动信号内在特征,并用于滚动轴承故障诊断。将频谱包络线作为低层输入逐层训练网络,获取故障特征表达,输入Softmax分类器实现故障分类;通过优化算法对整个深度神经网络进行微调,提高分类精度。滚动轴承故障诊断实验结果表明:所提出的深度神经网络能更准确地实现故障诊断,且在保证准确率的同时将频谱包络线作为低层输入,能够提高计算效率  相似文献   

15.
徐活耀  陈里里 《机床与液压》2020,48(14):190-194
针对提取有效滚动轴承特征和消除特征之间的冗余,提出一种基于堆栈稀疏自编码器和Softmax层构建的深度神经网络(DNN)用于轴承故障诊断。首先从振动信号提取12个统计特征和6个时频域特征,然后将获得的特征用于构建18维特征向量;高维特征向量通过堆栈稀疏自编码器逐层贪婪学习获得无冗余的高级特征;最后将高级特征输入Softmax分类层进行轴承故障诊断。实验结果表明:相比于传统BP和SVM分类器,DNN能更准确地识别滚动轴承故障类型。  相似文献   

16.
针对滚动轴承振动信号典型非平稳性、非线性的特点,提出一种基于小波变换(WT)和一维卷积神经网络(1DCNN)的轴承故障诊断多尺度卷积神经网络方法。通过小波变换对信号进行多尺度分解,然后对每个尺度成分进行重构,将重构后的信号进行傅里叶变换得到频谱表示,并将各尺度幅值数据构造成一维特征向量作为一维卷积神经网络的输入。最后利用一维卷积神经网络对输入数据进行特征学习,得到轴承故障诊断模型。利用滚动轴承的10个状态数据集验证其性能。结果表明:该方法可以避免人工提取特征,获得99.94%的诊断准确率。  相似文献   

17.
一种改进的BP神经网络在故障诊断中的应用研究   总被引:1,自引:0,他引:1  
唐志航  杨保安 《机床与液压》2007,35(11):177-179
人工神经网络作为一个具有高度非线性映射能力的计算模型,在工程中具有广泛的应用前景.它不需要预选确定样本的数学模型,仅通过学习样本数据即可以进行故障诊断.本文结合计算机综合业务的一些实际问题,探讨了利用改进的BP神经网络进行故障诊断的方法和应该注意的问题,在分析神经网络的基础上提出了基于改进的BP模型神经网络的故障诊断推理方法.结果表明,基于BP神经网络的故障诊断方法是行之有效的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号