共查询到17条相似文献,搜索用时 234 毫秒
1.
基于神经网络的液压泵故障诊断 总被引:10,自引:0,他引:10
本文提出了一种基于多层感知器神经网络的液压泵故障诊断技术,并建立了从故障信号采集,预处理到诊断的整个框架。最后对某柱塞泵作了试验。 相似文献
2.
基于Elman神经网络的液压泵故障诊断模型研究 总被引:2,自引:0,他引:2
针对传统BP网路进行液压泵故障诊断时,网络学习具有收敛速度慢和学习、记忆不稳定的缺陷,提出了将Elman神经网络应用于液压泵故障诊断的新方法,建立了Elman神经网络的应用结构模型,介绍了该网络的训练算法,阐明了液压泵故障诊断的实现过程。通过试验验证了该神经网络收敛速度快,学习记忆稳定,具有很好的学习功能;测试结果表明该诊断方法具有高可靠性,达到了预期的效果,可以用于液压泵故障诊断。 相似文献
3.
基于小波包与概率神经网络的液压泵故障模式识别 总被引:1,自引:0,他引:1
小波包具有良好的去噪效果和高频分析能力,而概率神经网络具有很好的分类效果。采用小波包分解重构液压泵故障特征信号,并提取第三层各频率段的节点能量作为特征向量,将特征向量概率神经网络模型的输入向量对液压泵故障模式进行识别。通过采用LabVIEW和MATLAB混合编写的识别软件系统对液压泵故障识别,证明了将该方法用在液压泵故障模式识别上,能取得良好的效果。 相似文献
4.
李军江水徐启胜李岩 《锻压装备与制造技术》2022,(3):82-87
针对液压泵数据退化特征维数高以及故障诊断精度不高的问题,提出了一种基于变分模态分解(Variational mode decomposition,VMD)与卷积神经网络(Convolutional Neural Network,CNN)的液压泵故障诊断方法。利用VMD良好的分解能力处理高维度数据,进行数据扩展,提取详细特征;基于CNN良好的特征提取和分类性能,在不需要先验知识的情况下直接从数据中提取特征,实现高精度故障诊断。该方法因具有端到端特征学习能力,在实测液压泵数据上进行验证,具有较高的故障诊断精度和稳定性。 相似文献
5.
液压泵轴承故障诊断的神经网络方法研究 总被引:4,自引:0,他引:4
他基于集成BP网络的液压泵轴承故障诊断方法。利用频域和倒频域进行特征提取,采用集成BP网络进行故障诊断和识别,解决了液压泵轴承故障特征提出困难、多故障识别困难的问题。试验结果表明,利用集成BP网络可以有效地诊断与识别液压泵轴承多故障模式,并且具有很强的鲁棒性。 相似文献
6.
本文提出了一种基于多层感知器神经网络的液压泵故障诊断技术,并建立了从故障信号来集,预处理到诊断的整个框架。最后对某柱塞梁作了试验。 相似文献
7.
8.
针对液压泵故障诊断问题,提出了一种基于局部特征尺度分解(Local Characteristic-scale Decomposition,LCD)、模糊熵和SOM神经网络三者相结合的故障诊断方法。对液压泵振动信号进行LCD分解,得到若干个内禀尺度分量(Intrinsic Scale Component,ISC);将ISC分量分别与原信号进行相关分析,筛选出包含主要故障信息的前几个ISC分量,计算其模糊熵并组成特征矩阵;将特征矩阵输入SOM神经网络进行分类识别。液压泵故障诊断实例表明,该方法能够准确识别液压泵典型故障,具有一定优势。通过与BP神经网络分类结果相对比,显示了SOM神经网络在特征分类方面的优越性。 相似文献
9.
10.
针对液压泵故障诊断的现实需要,提出了基于粗糙集理论的故障诊断方法.该方法利用小波分析对测量的原始数据进行去噪处理并结合Labview软件进行特征提取,得到揭示其内在规律的数据信息并建立故障诊断决策表.采用粗糙集理论提取决策表中的诊断规则,为液压泵的故障诊断提供有效的依据.通过实验证明了该方法可有效的应用于液压泵的故障诊断. 相似文献
11.
12.
13.
14.
15.
液压系统故障诊断知识处理方法研究 总被引:2,自引:0,他引:2
本文针对液压系统故障诊断系统的知识处理方法及基本问题进行分析与研究,提出液压系统故障诊断知识范围,并对故障诊断知识进行合理分类,最后对液压系统的知识获取途径进行与讨论。 相似文献
16.