首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用氧化镁烟气脱硫固废制备了类水滑石(HTLcs)。通过氧指数仪、锥形量热仪研究了类水滑石对聚氨酯硬泡(RPUF)/聚磷酸铵(APP)阻燃体系的阻燃和抑烟性能的影响。研究表明,当聚磷酸铵用量为40%、HTLcs用量为10%时,聚氨酯硬泡的极限氧指数(LOI)达到了34.2%,其最大热释放速率(PHRR)由RPUF的140 k W/m~2降低到85 k W/m~2,减幅达39.3%,且最大烟释放速率(PSRR)低于0.25 m~2/s。类水滑石与APP具备一定的协效阻燃和抑烟性能。  相似文献   

2.
有机硅、聚磷酸铵协效阻燃水性聚氨酯的燃烧性能研究   总被引:1,自引:0,他引:1  
以羟乙基封端聚二甲基硅氧烷、聚碳酸酯二醇为起始原料,与异氟尔酮二异氰酸酯反应,制备了有机硅改性水性聚氨酯(Si-WPU);然后添加聚磷酸铵(APP),制备出一系列阻燃Si-WPU-APP。研究了APP用量对Si-WPU阻燃性能及热稳定性的影响。垂直燃烧实验表明,随着APP用量的增加,SiWPU-APP的阻燃性增加,当APP的质量分数为20%时达到UL-94 V-0级;氧指数实验表明,随着APP用量的增加,Si-WPU-APP的氧指数逐渐升高,当APP的质量分数为20%时达到30%;锥形量热仪测试表明,随着APP用量的增加,Si-WPU-APP的点燃时间逐渐延长,最大热释放速率由600 k W/m2降低到450 k W/m2且生烟速率由0.074 m2/s下降到0.044 m2/s;TG测试表明,APP的加入没有延迟Si-WPU降解的作用,但能促进C—C、C—O及Si—O键的成炭,从而大大降低材料后期的分解速率并提高成炭量。综合以上性能,聚磷酸铵的最佳质量分数为25%。  相似文献   

3.
硬质聚氨酯泡沫(PUR)具有优异的保温性能、防水性能以及化学稳定性,但由于其潜在的火灾危险性,严重影响了它的使用范围。通过添加阻燃剂改善PUR的阻燃性能得到了广泛的关注,但单一的阻燃剂对阻燃性能的提升较小。以密胺树脂和氢氧化铝分别作为包覆材料对聚磷酸铵(APP)进行包覆,得到三聚氰胺甲醛树脂微胶囊化APP(MF-APP)和氢氧化铝微胶囊化APP(ATH-APP)。分别以MF-APP、ATH-APP以及未经包覆的APP作为白料,以多异氰酸酯为黑料,采用一步法制得全水发泡阻燃聚氨酯硬泡(RPUF)。研究APP、MF-APP、ATH-APP的表面形态及三种阻燃剂对聚氨酯硬泡阻燃性、热稳定性的影响,并将结果进行对比。研究表明,添加的阻燃剂质量分数为25%时,聚氨酯硬泡的极限氧指数达到最大值,添加MF-APP的RPUF极限氧指数最大为26.3%,最终成炭量约为12%,相较于ATH-APP与APP的成炭量有所提高。实验证明三聚氰胺甲醛树脂包覆聚磷酸铵能有效提高阻燃聚氨酯硬泡的阻燃性能和成炭量,提高了阻燃聚氨酯硬泡的热稳定性。  相似文献   

4.
以聚碳酸酯二醇、异氟尔酮二异氰酸酯为原料,添加不同用量的聚磷酸铵(APP),制备了一系列阻燃水性聚氨酯。UL-94测试表明,随着APP添加量的增大,水性聚氨酯的阻燃性逐渐增大。锥形量热仪测试表明,随着APP含量从0%增加25%,水性聚氨酯的点燃时间由29 s延长到45 s,最大热释放速率(HRR)由413.2 k W/m2降低到314.3 k W/m2。热重测试表明,水性聚氨酯膜的热稳定性随着APP含量的增加而逐渐升高,当APP为25%时,热稳定性最好。力学性能测试表明,随着APP含量的增加,涂膜的拉伸强度及断裂伸长率逐渐下降。综合考虑以上因素,阻燃水性聚氨酯中聚磷酸铵的适宜用量为20%。  相似文献   

5.
韩忆  吕高鹏  刘渊  王琪 《塑料工业》2013,41(5):30-32,63
采用自制的DOPO接枝氢氧化镁(MH)复合型阻燃剂(D-MH)制备了无卤阻燃聚丙烯(PP)材料。采用微型量热(MCC)、极限氧指数(LOI)、热重分析(TGA)研究了D-MH与MH的协同作用及其对材料阻燃性能、热释放总量及速率、热降解历程的影响。结果表明,接枝率仅为3.6%的D-MH阻燃体系即可表现出显著的催化成炭作用,使树脂热降解速率大幅降低。D-MH阻燃PP材料的LOI可达31.8%,其最大热释放速率(PHRR)和总热释放速率(THR)分别为496 W/g和18.9 kJ/g,相比于相同添加量的未改性MH阻燃聚丙烯树脂下降了19 W/g和0.7 kJ/g,表现出阻燃协同效应;另外,D-MH的表面有机化也提高了其与树脂相容性,使阻燃PP材料力学性能有所改善,更具综合性能优势。  相似文献   

6.
以六(对羟甲基苯氧基)环三磷腈(HHPCP)与甲基磷酸二甲酯(DMMP)组成复配阻燃剂制备了阻燃聚氨酯硬泡。利用FT-IR研究了HHPCP与多亚甲基多苯基多异氰酸酯(PAPI)的交联反应,通过扫描电子显微镜、极限氧指数测试仪、热重分析仪以及微型量热仪研究了HHPCP/DMMP不同配比对聚氨酯硬泡的阻燃性能和热性能的影响。结果表明,当在50份聚醚多元醇中加入阻燃剂HHPCP与DMMP各10份时,阻燃聚氨酯硬泡的氧指数、抗压强度、密度达到最优,氧指数为24.5%,且总释放热由21.6 k J/g降低到16.9 k J/g。  相似文献   

7.
以膨胀石墨(EG)分别和三聚氰胺(MA)或磷酸三乙酯(TEP)组成2种无卤复合型阻燃剂,用于聚氨酯硬泡的阻燃。结果表明,每100份聚醚多元醇,当EG用量均为10份,第二种阻燃剂MA或TEP添加量为15~25份时,所得的聚氨酯硬泡的氧指数可提高至27.0~29.7,说明复合阻燃剂使聚氨酯硬泡的阻燃性能明显提高;密度约为45 kg/m3的阻燃聚氨酯硬泡的压缩强度在192~252 k Pa范围,与未阻燃聚氨酯硬泡相比有所下降;导热系数在21.2~22.5 m W/(m·K)范围。  相似文献   

8.
以次磷酸铝(AHP)和三聚氰胺氰脲酸盐(MCA)为阻燃剂,采用熔融共混法制备了一系列阻燃聚氨酯弹性体复合材料(FR-TPU),采用热失重分析、极限氧指数、UL 94 垂直燃烧测试、锥形量热测试、力学性能测试、扫描电子显微镜研究了FR-TPU复合材料的热稳定性、阻燃性能、燃烧性能、力学性能和炭渣形貌。结果表明,AHP与MCA复配可明显提高FR-TPU复合材料的热稳定性、成炭率和阻燃性能;TPU/AHP-MCA20的极限氧指数为30.5 %,并达到UL 94 V-0级,热释放速率峰值(PHRR)和总热释放量(THR)分别下降至436 kW/m2和55.5 MJ/m2,拉伸强度和断裂伸长率分别为25.45 MPa和588.3 %;AHP与MCA复配可明显提高TPU/AHP-MCA20炭渣的致密性,从而有效抑制燃烧区域物质及能量交换,提高复合材料的火灾安全性。  相似文献   

9.
卢林刚  周霞  赵敏 《塑料》2012,41(1):9-12
将磷/溴单分子阻燃剂1,3,5-三(5,5-二溴甲基-1,3-二氧杂己内磷酰氧基)苯(FR)作用于硬质聚氨酯泡沫,制备出阻燃复合材料(FR/RPUF),利用极限氧指数、水平燃烧、锥形量热研究FR对硬质聚氨酯泡沫的阻燃性能及火灾燃烧性能的影响。结果发现:当FR添加量为15%时,阻燃聚氨酯泡沫的LOI达到24.1%,水平燃烧达到HF-1级,热释放速率平均值、热释放速率峰值、有效燃烧热及一氧化碳平均释放量分别降低78.7%、78.4%、57.1%和32.2%,硬质聚氨酯泡沫材料火灾危险性大幅度降低。  相似文献   

10.
分别将微胶囊红磷(MRP)、聚磷酸铵(APP)、间苯二酚双(二苯基磷酸酯)(RDP)通过熔融共混方法加入到高抗冲聚苯乙烯/氢氧化镁(HIPS/MH)复合材料中,制备了一系列含有不同含磷阻燃剂的HIPS/MH复合材料。采用垂直燃烧实验、极限氧指数实验(LOI)和锥形量热仪测试(Cone)研究了复合材料的燃烧性能。结果表明:与HIPS/MH复合材料相比,MRP阻燃剂用量为6.7%时,HIPS/MH/MRP复合材料的垂直燃烧级别由原来的无级别升至V-0级,LOI由原来的21.3%提高到23.5%,热释放速率峰值(PHRR)由271 k W/m~2降至175k W/m~2,平均热释放速率(AHRR)由134 k W/m~2降低到81 k W/m~2,总热释放量(THR)由111 MJ/m~2下降到64MJ/m~2,表明MRP与MH对HIPS有非常明显的协同阻燃作用。相比之下,APP和RDP对HIPS/MH复合材料的阻燃性能无显著影响,这两种含磷阻燃剂与MH之间无协同阻燃作用。此外,HIPS/MH/MRP复合材料具有良好的加工性能。  相似文献   

11.
针对聚磷酸铵(APP)耐水性不足、与聚丙烯(PP)等高分子材料相容性差等问题,采用甲醛-三聚氰胺(蜜胺树脂)和环氧树脂双层包覆了APP(EM-APP),采用红外、扫描电镜、热重分析、溶解度测试等方式表征了包覆效果;采用水平垂直燃烧、氧指数仪和锥形量热仪、热重-红外联用等设备考察了包覆APP用于阻燃PP的效果,探讨了阻燃机理。结果表明:包覆操作不但有效提高了APP的耐水性,且将具有成炭功能的包覆层引入到APP表面;EM-APP相较APP,800℃时残炭量提高14.2%,在聚丙烯中加入同样质量份时,前者具有更高的阻燃效率,热释放速率、总热释放量、烟释放速率和总烟释放量都明显降低;包覆改善了APP与PP的相容性;燃烧过程中包覆层起到了协同成炭的作用。  相似文献   

12.
以水为溶剂,合成一种聚-2-胺基-4,6-哌嗪基-1,3,5三嗪的新型成炭剂,并对该成炭剂的红外和热稳定性进行测试。通过该新型成炭剂与聚磷酸铵制备膨胀阻燃剂(IFR),探究IFR对聚丙烯(PP)的氧指数、垂直燃烧、热降解行为、燃烧行为、炭层形貌的影响。结果表明:当新型成炭剂与聚磷酸铵质量比为1∶4,IFR-4使PP的阻燃性能最佳。当IFR-4的添加量为25%,PP/25%IFR-4的氧指数达到29.4%,1.6 mm垂直燃烧通过V-0级。新型成炭剂的热稳定性高,起始分解温度达到285.6℃,800℃残炭率达到32.8%。PP/IFR-4最大热失重峰对应的温度是481.6℃,800℃残炭率7.6%,热分解速率降低。加入IFR-4阻燃剂,复合材料的最大热释放速率为435 k W/m2,总热释放量为3 827.3 MJ/m2。IFR-4的加入使PP材料形成致密的炭层。因此,IFR-4提高PP的热稳定性,PP表面形成的炭层,隔热隔氧,起阻燃作用,并且降低热释放速率和总热释放量。  相似文献   

13.
针对聚磷酸铵(APP)耐水性不足、与聚丙烯(PP)等高分子材料相容性差等问题,采用甲醛-三聚氰胺(蜜胺树脂)和环氧树脂双层包覆了APP(EM-APP),采用红外、扫描电镜、热重分析、溶解度测试等方式表征了包覆效果;采用水平垂直燃烧、氧指数仪和锥形量热仪、热重-红外联用等设备考察了包覆APP用于阻燃PP的效果,探讨了阻燃机理。结果表明:包覆操作不但有效提高了APP的耐水性,且将具有成炭功能的包覆层引入到APP表面;EM-APP相较APP,800℃时残炭量提高14.2%,在聚丙烯中加入同样质量份时,前者具有更高的阻燃效率,热释放速率、总热释放量、烟释放速率和总烟释放量都明显降低;包覆改善了APP与PP的相容性;燃烧过程中包覆层起到了协同成炭的作用。  相似文献   

14.
为了进一步提高聚丙烯(PP)膨胀阻燃体系的阻燃性能,将碳微球(CMSs)添加至膨胀型阻燃聚丙烯(壳聚糖/聚磷酸铵/聚丙烯(CS/APP/PP))体系中,经熔融共混的方法制备出CMSs/CS/APP/PP复合材料。采用数显氧指数仪(LOI)、锥形量热仪(CONE)、电子万能试验机(EUT)等仪器对复合材料进行了测试,同时考察了CMSs对聚丙烯膨胀阻燃体系(CS/APP/PP)阻燃性能的影响。结果表明,CMSs的加入可提高材料的阻燃性;在CMSs添加量为3%时,复合材料的极限氧指数达到31.5%,较CS/APP/PP体系提高了18.9%;热释放速率峰值(PHRR)、平均热释放速率(MHRR)、平均有效燃烧热(MEHC)、总热释放量(THR)均明显降低,成炭率显著提高,炭层更加致密,火灾性能指数(FPI)达到最大,为0.089 3 m~2·s/kW,较CS/APP/PP体系提高了1倍多,材料的阻燃性大幅度提升。同时CMSs的加入显著提高了复合材料的抑烟性,使复合材料的总烟释放量(TSR)、CO和CO_2的排放均明显降低;且复合材料的火灾蔓延指数(FGI)显著减小,为1.16 kW/(m~2·s),较CS/APP/PP体系降低了29.9%,火灾危险性明显降低。  相似文献   

15.
磷系阻燃剂FR/APP协效阻燃PP   总被引:3,自引:0,他引:3  
采用氧指数测定仪、热重分析仪和锥形量热仪研究了磷系阻燃剂1,3,5-三(5,5-二甲基-1,3-二氧杂环己内磷酸基)苯(FR)和聚磷酸铵(APP)复配体系对聚丙烯(PP)材料阻燃性能的影响.结果表明,FR/APP提高了PP的极限氧指数(LOI)、热稳定性和残炭率,降低了热释放速率.当w(FR)为15%和w(APP)为10%复配阻燃PP时,复合材料的LOI为29.6%.阻燃级别达到UL 94 V-0级.  相似文献   

16.
张涛  杜中杰  邹威  励杭泉  张晨 《塑料》2013,42(3):1-4
以三聚氯氰和4,4’-二氨基二苯砜为原料制备了新型的三嗪类成炭剂(CA-DDS),并将与聚磷酸铵(APP)复配后用于阻燃聚丙烯(PP)。研究了不同配比的APP/CA-DDS阻燃体系对PP热稳定性和阻燃性能的影响,并进而对比了少量碳纳米管的引入对APP/CA-DDS阻燃体系的提高作用。结果表明:所合成的三嗪类成炭剂CA-DDS具有良好的热稳定性和成炭性能,与APP复配使用可以促进PP成炭,有效地提高PP的阻燃性能,热释放速率峰值由1 046 kW/m2降低至660 kW/m2。在APP/CA-DDS总质量分数为25%,二者质量配比为2∶1的基础上添加质量分数1%的碳纳米管后,可进一步提高PP的阻燃性能,热释放速率峰值降低至352 kW/m2。  相似文献   

17.
PP/APP/磷系阻燃剂FR复合材料的燃烧性能研究   总被引:1,自引:0,他引:1  
将新型磷系阻燃剂1,3,5-三(5,5-二甲基-1,3-二氧杂环己内磷酸基)苯(FR)、无规聚丙烯(APP)加入聚丙烯(PP)中制备了 PP/APP/FR 复合材料,采用极限氧指数测定、垂直燃烧实验(UL94)、锥形量热分析对复合材料燃烧性能进行了研究。结果表明,APP/FR 提高了 PP 复合材料的氧指数和垂直燃烧性能级别,延长了点燃时间,降低了热释放速率和燃烧烟气中的 CO、CO_2浓度,阻燃效果显著。当15%(质量分数,下同)FR 和10%APP 复配阻燃 PP 时,复合材料的氧指数达29.6%,UL94 V-0级。  相似文献   

18.
将磷系阻燃剂1,3,5-三(5,5-二甲基-1,3-二氧杂环己内磷酸基)苯(FR)、聚磷酸铵(APP)、纳米SiO2复配,制备聚丙烯(PP)纳米复合阻燃材料。采用氧指数测定仪、水平垂直燃烧测定仪、热重分析仪、锥形量热仪对PP纳米复合阻燃材料的阻燃性能进行了研究。结果表明,FR/APP/SiO2提高了PP的氧指数、水平燃烧等级、热稳定性和残炭率,降低了热释放速率。当阻燃剂FR/APP/SiO2的总体含量为25 %,FR/APP/SiO2配比为15/7/3的情况下,PP纳米复合阻燃材料的氧指数为29.4 %,水平燃烧等级为FH-1。  相似文献   

19.
将可膨胀石墨(EG)与经过氧化处理的氧化石墨(OEG)分别与APP/氢氧化镁[APP/Mg(OH)_2]、APP/氢氧化铝[Al(OH)_3]复配,并通过浇注固化的方法制备聚氨酯阻燃涂层。通过极限氧指数、锥形量热测试对复合材料的阻燃性能进行了研究,并利用扫描电子显微镜对残炭形貌进行了分析。结果表明,OEG复配聚氨酯阻燃涂层表现出良好的阻燃性能,与粒径相同的74μm石墨相比,其极限氧指数有所提高,并且热释放速率峰值从258 kW/m~2下降到228 kW/m~2[APP/Mg(OH)_2],从461 kW/m~2下降到441 kW/m~2[APP/Al(OH)_3],分别下降了11.6%和4.3%;在复配OEG后残炭更加完整致密,且膨胀高度增加。  相似文献   

20.
用垂直燃烧仪、氧指数仪、马弗炉和锥形量热仪等考察了季戊四醇基化学成炭剂(FR 600)-三氧化二锑-十溴二苯乙烷协同阻燃天然橡胶的阻燃性能。结果表明,FR 600-三氧化二锑-十溴二苯乙烷有明显的协同阻燃效应。与三氧化二锑-十溴二苯乙烷阻燃的天然橡胶相比,FR 600的加入不仅可以降低三氧化二锑的用量,而且所阻燃天然橡胶的极限氧指数和垂直燃烧等级进一步提高;在阻燃剂总用量为40份(质量)、FR 600/三氧化二锑/十溴二苯乙烷(质量比)为4/5/31时,天然橡胶的极限氧指数达27%,垂直燃烧等级为V-0级。与三氧化二锑-十溴二苯乙烷阻燃的天然橡胶相比,FR 600-三氧化二锑-十溴二苯乙烷协同阻燃天然橡胶的成炭率较高,平均热释放速率、峰值热释放速率和发烟总量较低,点燃时间及火灾性能指数较大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号