首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 80 毫秒
1.
讨论了光伏发电系统最大功率点跟踪(Maximum Power Point Tracking,简称MPPT)常用控制方法的优缺点,对光伏电池功率电压曲线进行了分析。根据分析结果将变结构模糊控制应用到光伏发电系统MPPT的控制,能快速响应外界环境的变化,使光伏发电系统始终工作在最大功率点(Maximum Power Point,简称MPP)。在两种天气条件下的实验结果证明,该方法能使系统在MPP稳定工作,并能快速跟踪外部环境的变化,具有良好的动、稳态性能。  相似文献   

2.
改进模糊控制策略在光伏发电MPPT中的应用   总被引:1,自引:0,他引:1  
由于光伏电池的非线性和时滞性,模糊控制策略在MPPT控制中应用十分普遍。分析了传统模糊MPPT控制策略模糊控制器输入量的缺陷,提出一种新的改进模糊控制策略,即应用优化函数对传统输入量进行优化,使其更精确地进行模糊控制。最后还搭建了光伏发电系统仿真模型,对比传统模糊控制策略,所提改进型模糊在跟踪精度和响应速度均表现出优越性。  相似文献   

3.
光伏发电系统易受外部条件影响,输出波动大,抗扰能力差.为了提高系统利用率,提出一种结合模糊自抗扰策略的光伏MPPT控制技术,通过扩张状态观测器,对内外扰动进行补偿,结合模糊控制改进线性误差反馈控制律,能够快速跟踪光伏电池最大功率点电压和功率,减小了超调量,提升了系统的抗扰性能,具有很好的控制效果.最后在MATLAB/Simulink中搭建仿真模型,验证控制策略对提升光伏发电系统响应速度和抗扰性能的有效性和可行性.  相似文献   

4.
在光伏发电系统中需要对光伏电池的最大功率点进行跟踪来提高系统的输出功率。以光伏电池输出非线性特性为切入点展开研究,分析了常规算法的优缺点,针对其最大功率点跟踪(MPPT)动态和稳态性能不佳等问题,提出了将改进黄金分割法(IGSS)应用于光伏发电系统中。在Matlab/Simulink下进行了建模和仿真,仿真结果表明该方法能够迅速准确地跟踪光伏电池的最大功率点,防止算法跟踪方向误判情况的发生,表现出良好的动态和稳态特性,证实了该算法的正确性和有效性。  相似文献   

5.
介绍了光伏电池的特性,提出了一种基于BP神经网络的最大功率跟踪的控制策略,并进行了仿真试验。结果表明,该方法能够快速、准确地跟踪光伏电池的最大功率点,具有较好的控制精度,从而提高了电能的转换效率。  相似文献   

6.
对光伏发电系统类型、组成、常用MPPT算法等进行了解,然后对最大功率跟踪常用算法的原理及其优点、缺点进行分析。  相似文献   

7.
提出一种结合拉格朗日二次插值法和最优梯度变步长3点比较法的双模式最大功率点跟踪(MPPT)控制方法,该方法用于光伏发电系统可避免扰动观测法产生的电压振荡及误判造成的功率损失,同时可以改善恒压法不能随环境条件实时调整工作电压的缺陷。仿真与实验结果表明该方法的有效性。  相似文献   

8.
一种光伏发电系统变步长MPPT控制策略研究   总被引:1,自引:0,他引:1  
为了提高光伏器件的发电效率,提出一种变扰动步长的最大功率点跟踪算法,根据光伏组件输出P-U特性曲线上各点斜率的绝对值确定最大功率点跟踪的扰动步长,使搜索的快速性和稳定性同时增强.Matlab仿真验证结果表明:该算法能够实时对光伏组件输出功率进行跟踪调节,大大提高光伏系统跟踪最大输出功率速度的同时,有效降低系统输出功率在...  相似文献   

9.
粒子群优化(PSO)是一种基于生物智能的优化方法,能快速地搜索出多极点非线性函数的最优解,非常适合作为遮阴条件下光伏系统的最大功率点跟踪(MPPT)控制算法.针对因局部遮阴函数产生多极点的问题,在传统PSO的基础上加以改进,增加了粒子淘汰的环节.实验结果表明,改进后的算法使系统的MPPT控制更加快速有效.  相似文献   

10.
研究了光伏阵列的非线性功率输出特性,讨论了几种常用的最大功率点跟踪(MPPT)的控制方法,在此基础上设计了基于模糊控制的自适应PID控制器,该模糊控制器能快速响应外界环境的变化,使光伏发电系统始终工作在最大功率点(MPP);同时PID控制能有效地消除在MPP附近的振荡现象,提高系统的稳定性。在Matlab软件的Simulink下进行系统的建模和仿真,结果表明,该方法能够快速准确地跟踪MPP的变化,有着优越的稳态性能。  相似文献   

11.
针对传统光伏电池最大功率点跟踪技术扰动观察法中参考工作电压难以确定的缺点,提出了一种基于预测模型的MPPT方法。预测模型根据光伏电池的动态输出特性和环境条件,预测参考工作电压,并以其为扰动观察法的初值,在更小范围内搜索最大功率点。在基于DSP控制的硬件平台上进行实验,进行了该控制方法与传统控制方法的效率对比研究,实验结果证明了该控制方法在可快速搜索到最大功率点,并可显著提高光伏电池的发电效率。  相似文献   

12.
针对光伏发电系统在最大功率点跟踪时存在跟踪速度慢和电压振荡的问题,提出一种最大功率点跟踪的改进电导增量算法.该算法先获取光伏电池输出的电流、电压,然后进行滤波和最大功率跟踪.若输出功率与最大功率点之间偏差较大,则进行恒定步长跟踪,以便系统快速获得最大功率;若输出功率与最大功率点之间偏差较小,以二分变步长进行跟踪.该算法在TMS320F28335 DSP处理器件上实现,并成功应用于光伏发电最大功率跟踪系统.实验结果表明,该改进算法能够实现最大功率快速跟踪,减少系统功率损耗,提高系统最大功率跟踪精度.  相似文献   

13.
基于超螺旋滑模控制光伏MPPT的实现   总被引:1,自引:0,他引:1  
针对光伏发电过程中功率输出随机性的问题,提出一种基于超螺旋(Super-Twisting)二阶滑模控制的MPPT实现方法。此方法基于Boost升压电路,通过选取合适的滑模面将离散控制率转移到高阶,使控制量在时间上连续,从而设计了一种无抖颤滑模变换器,以实现光伏输出最大功率跟踪,并消除抖振的影响。为了验证算法的优越性,在Matlab/Simulink中搭建光伏发电系统模型进行仿真实验。结果表明:在光照强度和温度变化的条件下,相比于传统的控制算法,二阶滑模控制算法能快速实现最大功率跟踪,具有很强的鲁棒性。  相似文献   

14.
光伏发电中MPPT控制方法综述   总被引:5,自引:0,他引:5  
朱拓斐  陈国定 《电源技术》2011,35(10):1322-1324,1328
在光伏发电系统中,快速准确地进行最大功率点跟踪(MPPT)有利于光伏功率的充分利用.综述了光伏发电中较常用的最大功率点跟踪方法,指出各自的优缺点,对一些较实用的最大功率点跟踪算法如双步长扰动观察法、迭代比较法进行了阐述.为更好满足实际需求,对一些最大功率点跟踪方法的有机结合进行了探讨如电流固定参数法与扰动观察法相结合、...  相似文献   

15.
直流微电网光伏发电最大功率点追踪方法   总被引:1,自引:0,他引:1  
基于直流微电网母线电压稳定的实际情况,获得光伏电源电压和直流变换器占空比的函数关系,把占空比作为输入变量,在仅需测量光伏电源电流的基础上对其准确实施最大功率点追踪;可省略光伏发电直流微电网中众多分布式光伏电源端电压传感器及其相关电路,减少干扰,提高可靠性,降低系统成本。MATLAB下系统模型仿真和样机试验证明了所提控制方法的正确性与可行性。  相似文献   

16.
综述了在单峰值的情况下光伏发电系统中最大功率点跟踪使用的电导增量法以及各种变体算法,总结分析各自的优缺点,对光伏阵列最大功率点跟踪技术的跟踪速度、控制精度及将来研究和应用中需要解决的问题作了探讨。  相似文献   

17.
为了寻找更好的实现光伏发电系统最大功率点追踪控制方法,根据太阳电池的内部结构和伏安特性建立了太阳电池的等效电路,利用MATLAB语言建立了太阳电池板仿真模型。在分析已有最大功率追踪方法的基础上,提出了一种基于平均值控制的最大功率追踪方法,并对后级并网逆变电路进行理论分析和仿真实验,实验结果证明了所提出方法具有良好的实用性。通过对并网逆变器的控制实现了低谐波含量、高功率因数的并网要求。  相似文献   

18.
为准确跟踪光伏电池最大功率点,提高光伏电池的利用效率,分析了光伏电池等效模型及其输出特性,阐述了几种常用跟踪方法的原理及优缺点,并提出了基于电导增量法与Fibonacci搜索算法相结合的MPPT算法.仿真实验表明,该方法能在日照突变的情况下追踪最大功率点,并且使系统稳定工作在最大功率点,具有良好的抗干扰能力和较快的搜索速度,对光伏电池最大功率点有较好的追踪效果.  相似文献   

19.
双模糊控制法在光伏并网发电系统MPPT中的应用   总被引:1,自引:0,他引:1  
提出一种在光伏并网发电系统中进行最大功率点跟踪(MPPT)的双模糊控制法,将非对称模糊MPPT与模糊PID相结合,在设定参考电压环节使用模糊控制代替诸如扰动观察法等传统方法,在消除实际电压与参考电压偏差这一环节用模糊PID替换普通的PID控制。此外,还提出了4个反映MPPT性能的指标:环境缓慢变化时的MPPT时间、光伏阵列发出的能量大小、稳态时的功率波动大小和环境剧烈变化时光伏阵列发出的能量大小。设计了4个算例,在MATLAB/Simulink环境下对5种控制方法分别进行了仿真分析。通过对比各方法的性能指标和相应的输出功率波形图,验证了所提出的双模糊控制法是一种比传统方法更优的MPPT控制方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号