共查询到16条相似文献,搜索用时 46 毫秒
1.
针对传统的支持向量机(SVM)算法参数往往根据经验设定,难以建立最优模型以准确地检测出伺服电机滚动轴承早期故障的问题,研究一种基于多目标和声搜索优化SVM的伺服电机滚动轴承性能退化评估方法。首先提取轴承振动信号的时域、时频域特征作为原始特征集,采用堆叠稀疏自编码器对原始特征集进行更深层次的特征提取,得到最终的特征向量。之后以轴承退化曲线的趋势性和单调性作为适应度函数,采用多目标和声搜索算法对SVM的参数进行优化,建立最优评估模型,得到轴承的性能退化指标。实验结果表明:该方法能准确地检测出轴承的早期故障,相比于传统的轴承SVM性能退化评估方法具备更好的趋势性和单调性。 相似文献
2.
针对支持向量机模型状态数需要人为设定的不足,提出了一种基于自适应模糊C均值-支持向量机(AFCM-SVM)的滚动轴承退化状态评估与剩余寿命预测方法。该算法采用相对特征建立敏感特征数据集,利用聚类评价指标构造自适应函数,实现了模型聚类结果的自动更新,获得了轴承运行过程中的最佳状态数;基于AFCM-SVM模型与各个运行状态的一一对应关系,确定轴承在不同退化状态下的时间间隔,实现轴承的健康等级评估与寿命预测。根据美国NSFI/UCR智能维护中心提供的滚动轴承全寿命数据对所提算法进行了验证。结果表明,不受轴承个体差异的影响,AFCM-SVM能有效实现自动聚类,识别结果符合轴承退化演变规律;与分层狄利克雷(HDP)和K-means算法相比,AFCM-SVM具有更快的运算速度和更准确的辨识能力。 相似文献
3.
4.
6.
7.
8.
为了提高稀缺的滚动轴承故障样本的利用价值,以及针对支持向量机对噪声敏感的特点,提出了基于小波阈值去噪和SVM的轴承运行状态识别的新方法。对现有故障轴承振动信号样本进行小波阈值去噪,得到相应的去噪后样本。在此基础上结合SVM的参数寻优进行SVM模型的初步建立,并将错分样本重新去噪后进行SVM模型的重建,直到惩罚因子和交叉验证的精度达到预定标准,从而实现最优模型的建立以及轴承状态的识别。但是传统的软硬阈值函数各自存在的不足制约了信号去噪和特征提取的效果,并且无法实现去噪处理的可调性,因此,首先提出了一种改进的阈值函数,并结合MATLAB仿真实验分析了其优点。最后的滚动轴承诊断实例表明,引入改进阈值函数的去噪法能有效提高样本数据利用率和SVM的抗噪与泛化能力以及滚动轴承智能诊断的可靠性。 相似文献
9.
考虑到滚动轴承故障信号的非平稳性、强噪声性,导致状态评估结果不确定性高,提出一种基于广义S变换特征提取和变分贝叶斯-隐马尔可夫模型的滚动轴承性能评估方法。针对滚动轴承监测获得的振动信号,对其进行广义S变换后,分别进行时间、频率、时频的信息熵特征值运算,提取健康指数作为性能评估的特征向量,并使用变分贝叶斯-隐马尔可夫模型建立实时性能评估模型,用健康样本训练模型,以模型输出对数似然概率值作为性能退化的评估指标。利用数学模型仿真和辛辛那提大学提供的轴承数据验证特征指标和评估模型的可行性,结果表明广义S变换熵值优于常规的特征指标,在轴承早期微弱故障时灵敏度高,性能评估模型仅需要正常数据就可以准确表征轴承性能退化趋势,为设备的维修和故障检测提供了参考。 相似文献
10.
S变换兼具了小波变换和快速傅立叶变换各自的优势,具有良好的时频聚集性。归一化信息熵能够定量地度量信号分布的复杂程度。滚动轴承振动信号经S变换后,利用归一化信息熵定量地度量每个时刻下频率分布均匀程度,提出一种S-时间熵特征指标来反映滚动轴承的退化过程。针对滚动轴承内圈、轴承外圈、轴承滚动体的3种故障,分别对其3种不同损伤程度的数学模型进行仿真数据分析,提取各自S-时间熵指标进行对比,验证该方法的可行性。通过对滚动轴承加速疲劳寿命周期内的数据进行分析,与工程中常用的时域指标有效值进行对比,结果表明该方法的有效性。 相似文献
11.
针对提取有效滚动轴承特征和消除特征之间的冗余,提出一种基于堆栈稀疏自编码器和Softmax层构建的深度神经网络(DNN)用于轴承故障诊断。首先从振动信号提取12个统计特征和6个时频域特征,然后将获得的特征用于构建18维特征向量;高维特征向量通过堆栈稀疏自编码器逐层贪婪学习获得无冗余的高级特征;最后将高级特征输入Softmax分类层进行轴承故障诊断。实验结果表明:相比于传统BP和SVM分类器,DNN能更准确地识别滚动轴承故障类型。 相似文献
12.
基于小波包和支持向量机的滚动轴承故障模式识别 总被引:2,自引:1,他引:2
为了解决对故障轴承的特征提取和故障特征准确分类问题,提出了应用小波包变换和支持向量机相结合进行滚动轴承故障诊断的方法.小波包变换具有良好的时-频局部化特征,非常适于对瞬态或时变信号进行特征提取.而支持向量机可完成模式识别和非线性回归.利用上述原理根据轴承振动信号的频域变化特征,采用小波包变换对其提取频域能量特征向量,然后利用建立的支持向量机多故障分类器完成滚动轴承故障模式的识别.试验结果表明,支持向量机可以有效、准确地识别轴承的故障模式,为轴承故障诊断向智能化发展提供了新的途径. 相似文献
13.
滚动轴承早期故障信号易受噪声干扰,故障冲击成分难以提取,故障识别困难。为从多角度提取故障轴承振动信号特征参数,利用变分模态分解(VMD)将振动信号分解为若干本征模态分量(IMFs),基于包络熵、相关系数、峭度筛选IMF分量。提取所选IMF的时域和频域特征、信号VMD能量熵及各IMF能量比组成特征向量,从时域、频域和能量角度反映故障信息。使用麻雀搜索算法(SSA)优化SVM参数,确定最优参数,克服参数选择难题。将样本特征向量输入SSA-SVM中进行故障分类,轴承故障实验数据表明:该方法故障识别平均准确率在98.71%以上;与单一域特征相比,该方法对故障类型和损伤程度识别效果更佳。 相似文献
14.
滚动轴承作为多种机械设备的关键零件,其运行状态的好坏往往影响着整机设备的运行状况,因此高精度的滚动轴承状态预测对整机设备的运行状态有着重要的意义。针对滚动轴承单一预测模型精度较差的问题,构建一种基于时间序列ARIMA和支持向量回归机SVR理论的组合预测模型。首先针对单一模型进行预测,应用误差平方和倒数法得到两种预测模型的权重结果,最终将该组合模型的预测结果分别与单一预测模型作比对分析。结果表明:该组合预测模型的预测误差均小于单一模型,具有较高的可靠性。 相似文献
15.
为有效提取非平稳性、复杂性的滚动轴承振动信号特征,提出一种基于变分模态分解、改进烟花算法(IFWA)优化支持向量机(SVM)的滚动轴承故障诊断方法。利用VMD对原始信号进行分解,计算得到各IMF的样本熵,将原始信号的时域特征与其结合组成特征矩阵。为提高故障诊断效率,采用IFWA优化SVM,建立IFWA-SVM模型。使用训练集特征矩阵训练诊断模型,实现滚动轴承的故障诊断。利用实测信号验证该方法,并与粒子群算法优化进行比较。结果表明:利用该方法进行诊断,正确率提高了3.33%、训练时间缩短了21.55 s,验证了该方法的可行性。 相似文献
16.
机器人在精准装配时,摩擦力影响着控制精度。利用LuGre摩擦模型进行关节力矩计算时,机器人关节摩擦力具有周期性纹波误差。针对此问题提出一种改进的LuGre摩擦模型,包括LuGre摩擦模型表示的稳态摩擦力,以及与速度相关的位置依赖项。对摩擦模型进行分步辨识,利用LuGre摩擦模型的特征,对稳态摩擦力参数进行辨识,通过SVM多类分类算法、支持向量回归(SVR)和最小二乘法求解方程组,对模型中的位置依赖项进行参数辨识。实验结果表明,机器人在不同负载下运行,使用改进模型及辨识方法计算关节摩擦力矩时,误差可以降低50%以上。 相似文献