首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
对FCC汽油进行预加氢硫醚化处理,通过二烯烃和硫醇的醚化反应可脱除FCC汽油中的硫醇,降低二烯烃含量。实验室采用预加氢催化剂对FCC汽油预加氢硫醚化反应进行试验考察,试验结果表明:对于双烯值2.63gI/(100 g),硫醇、硫质量分数分别为158μg/g和680μg/g的FCC汽油,最佳反应条件为温度130℃、氢油比5、体积空速3 h-1、压力2.0 MPa;工艺参数优化试验结果表明:在最佳反应条件下,FCC汽油双烯脱除率为59%,硫醇脱除率为97%,RON损失0.2单位,烯烃减少量为0.3%,预加氢前后FCC汽油总硫含量不改变。  相似文献   

2.
针对当前FCC汽油选择性加氢脱硫技术中的硫醚化反应催化剂的研究,利用FCC汽油评价了Mo Ni/Al2O3催化剂的硫醚化反应催化性能,并进行了工艺条件优化和催化剂寿命评价。结果表明,Mo Ni/Al2O3催化FCC汽油硫醚化反应的优化条件为反应压力25 MPa、空速4 h-1、H2/油体积比3、反应温度130℃,在该条件下Mo Ni/Al2O3催化FCC汽油硫醚化反应运转600 h,硫醇转化率维持在95%以上,二烯选择性加氢率在100%,烯烃未发生加氢现象,辛烷值保持恒定。  相似文献   

3.
分析了FCC汽油不同切割馏分的硫形态分布,对比重汽油馏分选择性加氢脱硫反应前后的硫形态分布变化,并考察了反应温度对加氢汽油中硫形态分布的影响。结果表明:FCC汽油中的硫主要分布在高沸点馏分中,且主要为C2~C4噻吩和苯并噻吩类;加氢反应后,汽油中的硫醇、四氢噻吩、苯并噻吩较易脱除,2-甲基噻吩和C2噻吩较难脱除;反应温度对FCC重汽油加氢产物硫形态的分布具有重要的影响,温度高于265 ℃时,汽油脱硫率达到99%,加氢汽油中仅有少量的2-甲基噻吩和C2噻吩未被脱除,温度低于265 ℃时,汽油中硫化物的脱除率较低,并随反应温度的升高而增加。  相似文献   

4.
制备了硫醚化反应催化剂Ni/Al_2O_3,对其进行XRD物相分析和扫描电镜表征。在临氢条件下,通过固定床连续微型反应装置,利用模型汽油考察Ni/Al_2O_3、对硫醇与异戊二烯的硫醚化反应催化效果,同时研究了反应条件和汽油中主要组分对催化效果的影响。结果表明,当NiO负载量为15%时,Ni/Al_2O_3催化剂对二烯烃和硫醇的硫醚化反应具有较好的催化作用,对硫醇硫含量为107.4μg/g的模型汽油,在反应压力1.0MPa、反应温度80℃、体积空速2.0h~(-1)、氢油体积比为300的条件下能将油品中的硫醇硫降至1.2μg/g,脱硫醇率达到98%以上;汽油中烯烃含量对醚化反应基本没有影响,苯胺和苯酚对反应催化效果有较大的影响。  相似文献   

5.
制备了以γ-Al2O3为载体的Ni基选择性加氢硫转移催化剂Mo-Ni/γ-Al2O3,并用于催化裂化(FCC)汽油的加氢硫转移反应。对比了预硫化型和氧化型Mo-Ni/γ-Al2O3催化剂的活性和选择性,并考察了无氧焙烧温度、活性组分负载量对预硫化型Mo-Ni/γ-Al2O3催化剂加氢硫转移催化性能的影响。采用模型化合物研究了硫醇在MoNi/γ-Al2O3催化下的反应,考察了烯烃和硫醇对硫转移反应的影响。结果表明,无氧焙烧温度400℃下制备得到的w(NiO)=8.2%、w(MoS2)=5.6%的预硫化型Mo-Ni/γ-Al2O3催化剂具有相对较高的加氢硫转移反应催化活性和选择性;硫醇与烯烃的反应在催化剂表面的加氢活性位上进行,硫醇先加氢脱硫,生成吸附态H2S,吸附态H2S再与吸附的烯烃反应生成大分子硫醇或硫醚,达到硫转移的目的。  相似文献   

6.
对独山子石化公司加氢重汽油中的硫醇结构进行了分析,发现加氢重汽油中硫醇主要为正戊硫醇、正己硫醇和C7异构硫醇.采用固定床脱硫醇催化剂BXMC,以不同硫醇含量的加氢重汽油为原料,在实验室采用100mL固定床装置进行脱硫醇工艺评价试验,考察了体积空速、反应温度、反应压力等工艺条件对脱硫醇效果的影响,并进行了1000h寿命试验.结果表明,体积空这是影响脱硫醇效果的关键因素,反应温度、反应压力对脱硫醇效果的影响较小,固定床脱硫醇适宜的工艺条件为体积空速1.5 h-1、反应温度45℃、反应压力0.1 ~0.3 MPa,活化剂加入量100 ~200 μg/g.在实验室条件下进行的1000h寿命试验期间,能够将加氢重汽油中的硫醇质量分数降至10 μg/g以下,说明该脱硫醇催化剂对加氢重汽油中的二次硫醇有较好的脱除效果.  相似文献   

7.
介绍了中国石油天然气股份有限公司石油化工研究院与中国石油抚顺石化公司研究院联合开发的M-PHG催化裂化(FCC)汽油选择性加氢脱硫技术及其工业应用情况。该技术所使用的新型加氢催化剂对FCC汽油中的砷质量浓度要求控制在20μg/L以内,并配套使用PHG-161低温吸附脱砷催化剂。工业应用结果表明:未经干燥的PHG-161脱砷催化剂在装置开工初期脱砷后FCC汽油砷质量浓度在40μg/L左右,砷脱除率仅为65%左右,未能达到设计目标。装置经过两个月稳定运行后,标定期间脱砷后FCC汽油砷质量浓度在20μg/L以内,砷脱除率达到了85%左右。PHG-161脱砷剂工业使用效果良好,脱砷后FCC汽油满足加氢催化剂对原料中砷含量指标要求。  相似文献   

8.
对加工含硫原油时汽油加氢脱臭后硫醇含量超标的问题进行了分析,结果表明:除受加氢原料劣质化的影响外,重汽油加氢过程中烯烃与反应生成的硫化氢相结合而生成难以脱除的大分子硫醇是汽油加氢脱臭后硫醇含量超标的主要原因。通过优化工艺条件,如控制催化裂化反应温度为500~520℃、平衡催化剂的活性不小于58%、重汽油的初馏点为115~125℃等,另外还采取在反应器出口的油气管线中注入适量氨及采用轻、重汽油混合脱臭工艺等措施,使脱臭汽油的硫醇含量由12~25μg/g降低至5~12μg/g,脱臭汽油硫醇含量的合格率由20%~30%提高到95%以上。  相似文献   

9.
考察了Hydro-GAP技术循环氢中H2S含量对加氢汽油中硫醇的影响。结果表明,当循环氢中H2S体积分数低于0.06%时,加氢汽油中的硫醇含量与氢气单程通过时相当;当循环氢中H2S体积分数达到0.25%时,加氢汽油中的硫醇含量显著提高。在循环氢中H2S含量一定时,加氢汽油中的硫醇含量随反应温度的升高而降低。反应温度由260℃提高至380℃,循环氢中H2S体积分数为0.25%时,加氢汽油中的硫醇的质量分数由172μg/g降到42μg/g,降低幅度达到75.6%。由于Hydro-GAP技术采用较高的反应温度,并且催化剂上含有丰富的酸性中心,因而对烯烃与H2S反应生成硫醇具有抑制作用。  相似文献   

10.
催化裂化汽油重馏分催化氧化脱硫醇的实验室研究   总被引:3,自引:1,他引:2  
采用选择性加氢技术对FCC汽油重馏分进行处理时,有可能产生微量的二次硫醇,其稳定性高,较难脱除.在实验室研究了该二次硫醇被催化氧化脱除的效果.结果表明,离子对型脱硫醇催化剂的脱硫醇活性明显优于常规单一金属钛菁催化剂,复配型活化剂的氧化脱硫醇活性明显优于常规单一型活化剂.以多种加氢催化裂化汽油重馏分为原料进行了1 500h固定床催化氧化脱硫醇试验,结果表明,离子对型脱硫醇催化剂及复配型脱硫醇活化剂表现出良好的原料适应性及脱硫醇活性,脱后硫醇性硫含量可以稳定在5μg/g以下.该催化氧化脱硫醇工艺可以与加氢技术相配合,用于低硫清洁燃料的生产.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号