首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
针对液压再生制动系统的能量回收效率和制动安全性问题,对汽车液压再生制动系统的参数匹配进行了研究。建立了液压制动能量回收系统试验台,进行了蓄能器初始压力变化、系统最高压力变化、蓄能器总体积变化的实验研究;建立了液压再生制动系统试验台数学模型,基于Matlab/Simulink建立了液压制动能量回收系统的仿真模型,并进行了与台架相对应的仿真实验,研究了液压制动能量回收系统的能量回收效率;对液压制动能量回收系统进行了整车研究,采用ADAMS/car建立了某车型整车,并与Matlab进行了仿真研究。首先研究了液压制动能量回收系统单因素对能量回收效率和制动安全性的综合影响,其次采用正交实验法研究了多因素对能量回收和制动安全性的综合影响。研究结果表明,合理的液压制动能量回收系统参数能够显著提高能量回收效率和制动安全性。  相似文献   

2.
针对半挂车制动器磨损严重、能量损耗等问题,对半挂车的再生制动系统进行了研究,提出了液压蓄能器式再生制动系统。通过建立仿真模型,并针对制动与驱动工况建立数学模型,分析蓄能器容积与预充压力、泵/马达排量对液压再生制动系统的影响。研究结果表明,增大泵/马达排量,能提升制动能量回收效率;制动能量回收效率随着蓄能器的容积大小而不同;蓄能器预充压力增大,制动距离短,但不利于制动能量的回收与驱动位移的增加。再生制动系统能增加半挂车的行驶位移,提高燃油经济性,为液压混合动力研究提供了参考。  相似文献   

3.
为了解决汽车制动过程能量回收效率和制动稳定性的矛盾,以后轮驱动电动汽车为研究对象,提出了一种双电液再生制动系统协同控制方法,研究了再生制动力和液压制动力的协同制动、精确控制问题.建立了基于Ⅰ曲线对理想制动力分配模型,分析了后轮双制动系统力矩分配策略,确定了再生制动转矩与后轮制动压力转换关系,最后开展了道路试验.结果 表...  相似文献   

4.
针对混合动力汽车液压制动系统的结构特点,采用AMESim对系统的压力响应进行仿真分析。分别建立制动阀和继动阀模型,以位移和压力作为输入条件,得出制动力矩的输出结果。在不同蓄能器初始压力以及上弹簧刚度条件下,对比分析制动压力的输出规律,为液压系统的优化设计提供重要依据。  相似文献   

5.
汽车电控液压制动系统动态性能分析及试验研究   总被引:10,自引:0,他引:10  
为改善汽车主动安全性能,简化制动系统结构,研制一种电控液压制动系统,对其动态性能进行理论和试验研究。分析电控液压制动系统的结构原理和工作模式;根据关键零部件的液压特性理论推导电控液压制动系统的动力学模型;运用线性回归理论对系统模型中难以测量的关键参数加以辨识,利用自行研制的电控液压制动系统试验台测试数据进行模型验证;以BJ2500汽车为对象,研究电控液压制动系统制动过程,蓄能器压力、脉宽调制占空比、轮缸工作点压力及液压管路等因素对系统动态性能的影响;在制动性能测试试验场的平直路面进行电控液压制动系统的实车制动试验,结果表明所研制的电控液压制动系统动态响应速度快、控制精度高,制动过程车速平稳降低,制动方向稳定性好。  相似文献   

6.
为了提高挖掘机回转系统的运行稳定性,通过引入高低压蓄能器的方式提出了一种回转泵控液压系统,通过相互协同的方式来实现泵控过程,并在Simulink 平台开展了仿真分析。结果表明:单蓄能器和双蓄能器在各运动阶段和泵输出功率基本一致,形成了相同的能量释放与保持特性。相对于单蓄能器,双蓄能器回转系统缩短了约0.5 s的制动时间。高压蓄能器形成较小的油液充放范围,但能够达到较高压力,同时低压蓄能器起到弥补高压蓄能器体积偏小问题。减速制动时,高压蓄能器升高到最大压力后高低压蓄能器开始回收能量,可以更加高效回收能量,显著缩短制动时间。该系统的液压系统设计具有能量回收以及系统自动补油的功能,表现出很好的节能高效性能,对提高挖掘机液压系统运行效率具有一定的理论意义。  相似文献   

7.
针对单蓄能器液压混合动力汽车能量回收率与制动性能不能兼顾的问题,提出基于复合蓄能器的液压混合动力汽车新构型。文中使用的是30 L和10 L蓄能器组成的复合蓄能器,利用蓄能器容积越大储存能量越多及小蓄能器内压力建立较快的特点对传统液压混合动力汽车进行改进,保持蓄能器总体积不变,使用AMESim-Simulink软件搭建基于复合蓄能器的液压混合动力汽车模型,分别分析在同样的制动工况下可再生制动转矩与机械制动转矩的分配情况、蓄能器内压力的变化情况及制动能量回收率。分析结果表明:基于复合蓄能器的液压混合动力汽车在制动过程中可以通过切换大、小蓄能器的工作时机兼顾能量回收率和制动性能。  相似文献   

8.
基于E-Booster集成式电子液压制动(I-EHB)系统,研究其制动主缸液压力跟随特性。从制动系统PV特性(液压力-齿条行程特性关系)出发,采用双闭环模糊PID控制算法。通过对系统方案及控制策略分析,设计控制单元,并搭建试验台架对控制算法进行验证。结果表明:在环境条件及系统参数不变的前提下,相较于单闭环控制算法,双闭环模糊PID控制算法下的制动主缸液压力在阶跃试验中有更快的建压响应,其0~50 bar的建压最短响应时间可达32 ms,较单闭环控制快34 ms,最大液压力控制精度提升了2.58%,验证了算法的可行性,为接下来进一步研究系统鲁棒性提供了一定的理论基础。  相似文献   

9.
针对目前并联式液压混合动力车存在制动特性和能量回收率不能兼顾的缺陷,通过分析蓄能器参数在液压辅助系统中的影响作用,提出了用2个小容积蓄能器代替1个大容积蓄能器,并采用蓄能器逐个充液的方案。分析了并联式液压混合动力车能量回收与辅助驱动系统的工作原理和关键元件的参数配置;建立了双蓄能器能量回收与辅助驱动AMESim仿真模型,并进行了车辆液压低速制动和高速制动的仿真分析。结果表明:采用双蓄能器逐个充液的制动方式,低速制动能够显著缩短制动时间和制动距离,高速制动能够有效提高能量回收率。  相似文献   

10.
工程车辆双液转换型全动力制动系统响应特性研究   总被引:2,自引:0,他引:2  
在设计研制了既能保持全动力液压制动系统优点,又能降低整机制造成本的双液动力转换器的基础上,建立了包括转换器在内的全动力液压制动系统动态数学模型。采用仿真与试验相结合的方法,对系统的动态响应特性进行了分析。通过台架试验验证了仿真模型,掌握了主要系统参数对制动压力响应特性的影响规律。应用结果表明,双液动力转换型制动系统能够满足轮式工程车辆的要求。  相似文献   

11.
合理配置系统各主要参数,是影响混合动力车辆制动性能及节能效果的关键问题。以轮边驱动液压混合动力车辆为原型,分析了轮边驱动液压混合动力车辆能量回收系统的工作原理,以原型车的1/4为基础,对辅助动力元件(蓄能器)、二次元件(液压泵/马达)的参数进行了理论分析;建立了能量回收系统的AMESim仿真模型,进行仿真分析;搭建了试验台架,开展试验验证。结果表明:在满足制动性能要求的前提下,增大蓄能器容积以及降低蓄能器最小工作压力有利于回收制动能量;二次元件的排量对制动性能的影响比较大,对制动能量的回收率影响很小;蓄能器工作压力越低,能量密度越大。  相似文献   

12.
以低地板有轨电车液压制动系统为研究对象,利用AMESim软件建立液压制动系统模型,对常用制动及保持制动工况下的压力调节过程及蓄能器的工作过程进行分析,并讨论了液压管路对系统的影响。仿真结果从理论上验证了该制动系统的可靠性,也通过参数化模型分析为该系统的设计调试及优化提供了一定的理论参考。  相似文献   

13.
以某型号防爆胶轮车的双回路液压制动系统为研究对象,分析其工作原理,介绍了一种确定车辆合理制动力矩和制动压力的计算方法,论述了充液压力与蓄能器容积大小关系及参数计算方法。建立了系统及元件AMESim仿真模型,进行了充液和制动联合仿真以及前后桥制动响应特性仿真。仿真结果表明:模型准确,结果与设计目标基本一致,液压系统性能良好,满足设计要求。  相似文献   

14.
节能型电液动力制动系统将再生制动能量重新应用于动力制动系统,实现了能量的高效利用。为研究该系统的动态特性及主要参数对系统的影响规律,设计了系统的台架试验。在原有电液动力制动系统的基础上,增加了能量回收系统、动力调节模块等,用solidworks三维软件进行布置后,建立了试验台。通过试验,模拟了动力调节过程和电液制动过程,获得了系统的动态特性,为系统的设计与理论分析提供了依据。  相似文献   

15.
对双管调制下永磁无刷直流电机的能量回收条件进行分析,采用再生制动力矩调节,液压制动力矩补偿的方法,设计了电机再生制动防抱死控制系统。通过变结构控制策略设计,在保证制动安全的同时增加了能量回收效率。建立了再生ABS的Simulink仿真模型,仿真结果表明:轮速较高时电机再生制动能够独立承担制动需求,无需进行液压补偿;随着轮速降低,当占空比到达临界值时,液压制动进行补偿,能够再次实现能量回收,充分利用电机制动的优势,提高整个再生制动防抱死过程的能量回收效率。  相似文献   

16.
针对纯电动汽车续驶里程低、电池充电难等问题,对纯电动汽车的再生制动系统进行了研究,通过比较多种液压制动能量回收方案与储能方式,提出了定压源飞轮液压再生制动系统。为提高所提出的再生制动系统的能量回收效率,以泵/马达和蓄能器工作参数作为变量进行了试验研究和基于AMESim软件的仿真研究,通过仿真分析和试验研究对比,找出了最佳的参数匹配。研究结果表明,该再生制动系统的能量回收效率随着蓄能器容积的大小不同和液压泵/马达的排量不同而改变,泵/马达排量越大回收的能量越多,但是随着排量的增加泵/马达上的阻力也增加了,高于一定值后能量回收效率会下降;蓄能器容积越大,可回收的能量越多。对该系统的研究值得借鉴,可为合理匹配电动汽车液压再生制动系统参数提供依据。  相似文献   

17.
为了研究某液压制动能量回收回路中蓄能器的能量回收效率,通过计算分析和台架实验验证,研究了蓄能器稳定性特点、不同转速下蓄能器的制动能回收效率和压力与马达排量对蓄能器制动能量回收效率的影响。实验结果表明,该蓄能器回路在制动初始转速为160~190 r/min的能量回收效率明显较高;马达排量对于制动初始转速较高时的能量回收效率影响较大,对制动初始转速较低时的能量回收效率影响较小;系统压力对于制动初始转速较低时的能量回收效率影响较大,对制动初始转速较高时的能量回收效率影响较小。  相似文献   

18.
针对现有的电液混合动力轨道车,为提高其制动能量回收效率,利用AMESim建立液压再生制动模型,在保证制动性能的基础上,对电液轨道车制动初速、摩擦制动力以及蓄能器的参数对回收效率的影响进行分析。结果表明:制动初速越高,能量回收效率越低;摩擦制动力提供的比例越小,能量回收效率越高;蓄能器充气压力越大,容积越大,能量回收效率越高,为了提高能量回收效率,需对蓄能器参数进行合理选择。  相似文献   

19.
蓄能器充液特性对液压系统的压力稳定有重要作用。该研究对牙轮钻机充液系统的充液特性及其关键结构元件——充液阀特性进行研究。在蓄能器充液过程中,对充液阀进行机理分析,建立数学模型,搭建AMESim仿真模型,得出蓄能器在工作状态下的压力、流量随时间变化的变化规律,揭示了充液阀满足充液系统性能要求。  相似文献   

20.
以智能铲运机液压制动系统为研究对象,推导了液压制动系统中蓄能器充液及制动过程中的动态数学模型,利用AMEsim软件建立了液压制动系统仿真模型,并对液压制动系统动态特性进行了仿真分析。仿真结果表明,智能铲运机液压制动系统的动态响应速度快,制动灵敏,制动性能安全可靠。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号