首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
利用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、电子探针(EPMA)、X射线衍射仪(XRD)、室温拉伸等手段, 通过两相区保温-淬火(IQ)、两相区形变后保温-淬火(DIQ)、两相区保温-淬火-配分-贝氏体区等温(IQ&PB)及两相区形变后保温-淬火-配分-贝氏体区等温(DIQ&PB)热处理工艺, 研究高温形变对室温组织、性能、残余奥氏体稳定性的综合影响作用.结果表明, 经15%的压缩形变后铁素体中位错密度由0.290×1014增加至1.286×1014 m-2, 马氏体(原奥氏体)中C、Cu元素富集浓度提高, 高温形变产生位错增殖对元素配分有明显促进作用.DIQ&PB工艺下, 形变后贝氏体板条尺寸变短且宽度增加0.1 μm左右, 贝氏体转变量较未变形时增加14%, 多边形铁素体尺寸明显减小.力学性能方面, 两相区形变热处理后抗拉强度增加132.85 MPa, 断后伸长率增加7%, 强塑积可达25435 MPa·%.形变后残余奥氏体体积分数由7.8%提高到8.99%, 残余奥氏体中碳质量分数由1.05%提高到1.31%.   相似文献   

2.
采用γ单相区和γ+α双相区轧制并淬火工艺以及双相区再加热-淬火-碳配分(IQ&P)工艺,研究预处理组织对低碳钢室温状态多相组织特征及力学性能的影响规律.实验用低碳钢经两种工艺轧制并淬火处理,获得马氏体和马氏体+铁素体的预处理组织,再经双相区IQ&P工艺处理后均获得多相组织.马氏体预处理钢的室温组织由板条状亚温铁素体、块状回火马氏体以及一定比例的针状未回火马氏体和8.2%的针状残余奥氏体组成;马氏体+铁素体预处理钢由板条状亚温铁素体、块状和针状未回火马氏体以及14.3%的短针状或块状残余奥氏体组成.在相同的双相区IQ&P工艺参数下,预处理组织为马氏体的钢抗拉强度为770 MPa,伸长率为28%,其强塑积为21560 MPa·%;而预处理组织为马氏体+铁素体的钢抗拉强度为834 MPa,伸长率增大到36.2%,强塑积达到30190 MPa·%,获得强度与塑性的优良结合.   相似文献   

3.
采用双相区保温—淬火—配分工艺对低碳硅锰钢进行热处理,通过扫描电镜、X射线衍射仪和拉伸试验等,研究了不同淬火温度对QP钢组织及力学性能的影响。结果表明:当淬火温度为220℃时,试验用钢综合力学性能最佳,抗拉强度达到1 400 MPa,延伸率为13.3%,强塑积达到18 620 MPa·%,随着淬火温度的升高,试验用钢的抗拉强度呈逐渐降低的趋势,塑性有所增大,室温组织中板条马氏体含量逐渐减少,碳化物颗粒逐渐增多,出现少量块状马氏体组织;双相区Mn元素向奥氏体的扩散补充了QP过程中碳配分的不足,最终室温残余奥氏体由两部分组成:一是少量富碳的残余奥氏体,另一部分则是经碳配分的富锰残余奥氏体,而淬火温度220℃的选取最为合理,为试验用钢提供了较好的塑性。  相似文献   

4.
研究了一种新型奥氏体-贝氏体复相钢的等温淬火工艺,对不同工艺参数下奥氏体-贝氏体钢进行组织、力学性能检测,研究结果表明:奥氏体化温度850℃、保温时间90 min,等温淬火温度200℃、等温淬火时间120 min为最佳热处理工艺参数,其微观组织为针状的贝氏体以及均匀分布的残余奥氏体。此时,奥氏体/贝氏体钢的抗拉强度1 289 MPa,伸长率6.3%。  相似文献   

5.
基于热镀锌的工艺特点制定Q/P热处理工艺,研究了奥氏体化温度及配分时间对组织和性能的影响。结果表明,随奥氏体化温度从800升至900℃,Q/P处理后组织中铁素体量减少,马氏体和残余奥氏体量增加,钢的屈服强度、抗拉强度均升高,伸长率降低,900℃奥氏体化时钢的强塑积最高。在460℃配分10、30、60s时,随着配分时间延长,组织中马氏体发生回火且发生大量贝氏体转变,造成Q/P处理后残余奥氏体量减少,使钢的抗拉强度、伸长率和强塑积均下降。  相似文献   

6.
研究了热镀锌用高强TRIP钢的退火工艺对性能的影响和组织演变规律.结果表明:实验用钢可获得780.00MPa以上的抗拉强度和24.00%以上的断后延伸率;两相区加热温度和贝氏体保温时间对钢的力学性能具有显著影响,两相区加热温度为850℃,贝氏体保温时间为30s时,实验用钢能获得最佳的综合力学性能;在贝氏体中温相变后,仍有部分亚稳奥氏体(碳含量较低)在后续冷却过程中发生马氏体相变,从而导致钢退火后的微观组织由铁素体、贝氏体、残余奥氏体和马氏体组成.  相似文献   

7.
朱帅  康永林  邝霜  姜英花 《钢铁》2014,49(6):69-73
 Q&P(Quenching and Partitioning, 淬火配分)工艺在CCE条件下,通过采用[Ms]和[Mf]点之间的最佳淬火温度和低于[Ms]点的配分温度,避免配分阶段的贝氏体形成最终可以得到最高含量的残余奥氏体组织。但试验中得到不足体积分数8%的残余奥氏体含量限制了钢塑性的提高。通过提出淬火-贝氏体区配分工艺,并应用在(0.21~0.29)C-(1.5~2.0)Si-(1.5~2.1)Mn成分钢,得到了体积分数12%左右的残余奥氏体含量和25%左右的伸长率,同时强度保持在1 000~1 100 MPa,强塑积最高达到36.6 GPa·%。不同的淬火温度和配分温度试验结果表明,工艺变化对强度影响较低,伸长率和强塑积随着配分温度的提高而提高,其中270 ℃的淬火温度试样的提高幅度高于245 ℃淬火试样,采用Q&PB工艺得到了无碳贝氏体+马氏体+残余奥氏体的三相组织。淬火和贝氏体区配分得到了优异的强度和塑性的结合,为新一代汽车用钢的发展提供新的思路。  相似文献   

8.
将C-Si-Mn钢加热至800℃保温120 s后,分别快速冷却至350~410℃保温600 s以模拟贝氏体等温转变工艺。通过扫描电镜(SEM)和拉伸测试的方法研究了贝氏体等温温度对超高强相变诱导塑性钢(TRIP钢)微观组织和力学性能的影响规律。结果表明,冷轧TRIP钢的微观组织由铁素体、贝氏体、马氏体和残余奥氏体组成;贝氏体和残余奥氏体形成于等温转变阶段,而马氏体形成于等温后的终冷阶段。随着贝氏体等温温度增加,固溶C原子扩散系数提高,促进残余奥氏体中碳化物的析出。因此,奥氏体中的平均固溶C含量降低,使得TRIP钢残余奥氏体分数降低,马氏体体积分数增加。贝氏体等温温度由350℃增加至410℃时,TRIP钢屈服强度由720 MPa降低至573 MPa,抗拉强度由1 195 MPa提高至1 312 MPa,伸长率A_(80)由17.8%降低至12.5%。贝氏体等温温度为350℃时,冷轧TRIP钢具有优良的综合力学性能,强塑积达到21 270 MPa·%。  相似文献   

9.
采用盐浴热处理方法配合性能检测及显微组织分析方法研究了热处理工艺对含钒冷轧TRIP钢组织性能的影响,结果表明试验钢在所采用的热处理工艺下其抗拉强度均达到700 MPa,且在780℃×60 s+400℃×180 s工艺下获得最佳综合性能,屈服强度、抗拉强度、断后伸长率、强塑积分别为514 MPa、738 MPa、29%、21 402 MPa·%;随着两相区退火温度的升高,两相区奥氏体所占的体积分数也越高,使最终组织中贝氏体及马氏体等强化相含量增多,造成试验钢强度上升、塑性下降;钒在试验钢中对残余奥氏体的积极作用并未体现,可能与退火时间较短和贝氏体区等温时钒碳(氮)化物重新析出消耗残余奥氏体中碳原子造成其含量及稳定性下降有关。  相似文献   

10.
采用冷轧+两相区温轧退火(CR+WR+IA)热处理工艺,研究了两相区退火时间对超细晶铁素体与奥氏体中组织形貌演变、C和Mn元素配分行为以及力学性能的影响。结果表明,冷轧试验钢经两相区形变退火处理后,获得了由铁素体、残余奥氏体或新生马氏体组成的超细晶复相组织。在645℃随退火时间的延长,形变马氏体向逆相变奥氏体配分的C、Mn元素增多,C、Mn元素富集位置增加,同时富Mn区形变马氏体回复再结晶现象明显;伴随少量碳化物溶解,试验钢的屈服强度由741 MPa持续降低到325 MPa。两相区退火10 min时,试验钢力学性能最佳,此时抗拉强度达到最大值1 141 MPa,断后伸长率及均匀伸长率分别为23.6%和18.1%,强塑积达到26.928 GPa·%。  相似文献   

11.
利用彩色金相、扫描电镜及拉伸实验等方法,研究了IQPB热处理工艺下低碳硅锰钢在450℃时不同等温时间淬火碳配分工艺对其组织及力学性能影响。结果表明,经不同时间等温碳配分工艺处理,实验钢显微组织基本由粒状贝氏体及粒状组织构成。当配分时间在200~600s时,晶界边缘大块状M/A岛数量逐渐减少,但细小颗粒状M/A岛数量逐渐增多并趋于有序化排列,导致抗拉强度升高,伸长率降低。随碳配分时间延长,细小颗粒状M/A岛又趋于弥散化排列,并且当碳配分时间大于1 200s时出现无碳化物板条贝氏体,其贝氏体板条间的薄膜状残余奥氏体更加稳定,同时受弥散排列的细小颗粒状M/A岛影响,伸长率得到提高,抗拉强度减少。  相似文献   

12.
基于合金减量化原则,热轧后采用以超快冷技术为核心的两相区弛豫-淬火配分(F-QP)工艺技术,借助OM、SEM、TEM、XRD和室温拉伸等试验手段,研究了配分时间对试验钢组织性能的影响。研究表明:随着配分时间延长,铁素体体积分数逐渐增加,残余奥氏体含量先增加后降低,马氏体的体积分数逐渐减小;抗拉强度降低,伸长率增加,强塑积增加,屈强比较低为0.55~0.60,n值较高为0.14~0.18。配分时间对各相的体积分数、形貌、分布和析出行为有影响。30 s配分的试验钢,组织中较多的细长条马氏体、细小铁素体和薄片状残余奥氏体提高了材料的位错密度和均匀变形能力,表现出最优的综合性能。  相似文献   

13.
将C-Si-Mn钢加热至800℃保温120 s后,分别快速冷却至350℃保温100~1 000 s以模拟贝氏体等温转变工艺。通过扫描电镜(SEM)和拉伸测试的方法研究了贝氏体等温时间对超高强冷轧相变诱导塑性钢(TRIP钢)微观组织和力学性能的影响规律。结果表明,冷轧TRIP钢的微观组织由铁素体、贝氏体、马氏体和残余奥氏体组成。贝氏体和残余奥氏体形成于等温转变阶段,而马氏体形成于等温后的终冷阶段。随着贝氏体等温时间增加,促进了过冷奥氏体向贝氏体转变,固溶C原子充分向剩余奥氏体中富集。因此,过冷奥氏体中的平均碳含量增加,使得冷轧TRIP钢残余奥氏体分数提高,马氏体体积分数下降。贝氏体等温时间由100 s延长至1 000 s时,冷轧TRIP钢屈服强度由596 MPa提高至692 MPa,抗拉强度由1 455 MPa降低至1 138 MPa,屈强比由0.41提高至0.61,伸长率(A80)由6.3%提高至18.9%。贝氏体等温时间为1 000 s时,冷轧超高强TRIP钢具有优良的综合力学性能,最大强塑积达到21 510 MPa·%。  相似文献   

14.
采用冷轧+两相区温轧退火(CR+WR+IA)热处理工艺,研究了两相区退火时间对超细晶铁素体与奥氏体中组织形貌演变、C和Mn元素配分行为以及力学性能的影响。结果表明,冷轧试验钢经两相区形变退火处理后,获得了由铁素体、残余奥氏体或新生马氏体组成的超细晶复相组织。在645℃随退火时间的延长,形变马氏体向逆相变奥氏体配分的C、Mn元素增多,C、Mn元素富集位置增加,同时富Mn区形变马氏体回复再结晶现象明显;伴随少量碳化物溶解,试验钢的屈服强度由741持续降低到325MPa。两相区退火10min时,试验钢力学性能最佳,此时抗拉强度达到最大值1141MPa,断后伸长率及均匀伸长率分别为236%和181%,强塑积达到26928MPa·%。  相似文献   

15.
为了获得最佳的热处理性能,对于一种自行设计成分的衬板用超高强度中碳中铬的马氏体钢进行了热膨胀试验,并考虑淬火温度、淬火保温时间、回火温度及回火保温时间4个影响因素,设计了9组正交试验,并采用极差法对不同热处理条件下的试验钢力学性能进行分析,讨论4个因素对试验钢性能的影响大小,从而选择出最佳的热处理工艺为:油淬(950℃保温1.5h)+回火(250℃保温3h)+空冷至室温。试验钢在热处理后获得了马氏体+残余奥氏体混合组织,抗拉强度达到1774.6MPa,屈服强度达1369.4MPa,硬度达55.3HRC,无缺口冲击功达22J。  相似文献   

16.
吴迪  李壮  吕伟 《钢铁》2012,47(8):36-38,40,42
通过实验室热轧机组的控轧控冷试验,研究了控轧控冷参数对超高强铁素体/贝氏体双相钢组织性能的影响。结果表明,采用不同温度终轧,轧后不同方式冷却,抗拉强度几乎都在1 000MPa以上,屈强比在0.54~0.62之间,伸长率在13%~17%之间。铁素体晶粒随终轧温度降低和冷却速度加快而细化;终冷温度降低,贝氏体量增多。经800℃终轧后层流冷却至560℃左右空冷,由于铁素体晶粒细化,组织中大量的粒状贝氏体、无碳化物贝氏体、少量的孪晶马氏体以及残余奥氏体的存在使抗拉强度达1 130MPa,伸长率达16%,强塑积达到18 080MPa.%的最高值。控轧控冷获得以铁素体/贝氏体双相组织为主并含有少量残余奥氏体+马氏体的复相组织,使试验钢具有了优异的力学性能。  相似文献   

17.
研究了0.15C-Mn-Si-Cr低碳低合金钢在Ms点以下不同温度预淬火-碳分配工艺(QP工艺)及贝氏体转变对钢组织与性能影响。结果表明,实验钢经QP处理后获得贝氏体/马氏体复相组织,与淬火回火钢相比能获得更多的残余奥氏体量,随着淬火碳分配温度的升高,钢中残余奥氏体量增加,等温温度超过310℃后,钢中析出碳化物,残余奥氏体量减少。在250℃预淬火温度等温碳分配淬火,钢的冲击韧性显著高于传统的淬火回火钢。  相似文献   

18.
对控轧控冷工艺生产的16 mm厚度规格NM450耐磨钢板进行930℃+保温20 min淬火、200℃+保温25 min回火处理,并对热轧态、淬火态及回火态的钢板取样进行组织性能分析。结果表明,热轧后钢板组织为铁素体+珠光体以及少量贝氏体,淬火组织为马氏体+残余奥氏体以及少量贝氏体,回火组织为马氏体+残余奥氏体+针状贝氏体。试验钢淬火+回火处理后Rm1 378 MPa,A5021.5%,-20℃夏比冲击功61 J,表面布氏硬度443 HBW,具有良好的综合力学性能。  相似文献   

19.
吴腾  吴润  刘斌  梁文 《钢铁研究学报》2020,32(9):826-832
摘要:基于合金减量化原则,热轧后采用以超快冷技术为核心的两相区弛豫 淬火配分(F-Q&P)工艺技术,借助OM、SEM、TEM、XRD和室温拉伸等试验手段,研究了配分时间对试验钢组织性能的影响。研究表明:随着配分时间延长,铁素体体积分数逐渐增加,残余奥氏体含量先增加后降低,马氏体的体积分数逐渐减小;抗拉强度降低,伸长率增加,强塑积增加,屈强比较低为0.55~0.60,n值较高为0.14~0.18。配分时间对各相的体积分数、形貌、分布和析出行为有影响。30s配分的试验钢,组织中较多的细长条马氏体、细小铁素体和薄片状残余奥氏体提高了材料的位错密度和均匀变形能力,表现出最优的综合性能。  相似文献   

20.
采用双相区形变+IQP及IQP(双相区等温-奥氏体化-淬火-碳配分)热处理工艺,研究了双相区形变对一种含Cu低碳钢Cu配分行为及其组织性能的影响。采用电子探针(EPMA)、扫描电镜(SEM)及透射电镜(TEM)等手段对元素配分行为及组织演变进行了表征。结果表明:实验钢经2种工艺处理后均出现Cu元素向逆转奥氏体的配分行为,采用双相区形变+IQ(双相区保温淬火)处理的组织中富Cu最高的区域面积为12.9%,比IQ工艺下富Cu区域提高108%;双相区形变+IQP工艺处理后实验钢的晶粒明显细化,且组织中块状残余奥氏体较多;与单一IQP工艺相比,双相区形变+IQP工艺处理的实验钢抗拉强度由1 253MPa提高到1 293MPa,伸长率由16.9%提高到18.3%,残余奥氏体体积分数由11.6%提高到13.8%,表明双相区30%的形变处理实现了促进Cu配分行为诱导残余奥氏体含量增加和细晶强化的双重效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号