共查询到20条相似文献,搜索用时 62 毫秒
2.
混合直流输电系统整流侧采用电网换相换流器(line commutated converter,LCC),逆变侧采用混合型模块化多电平换流器(full half bridge modular multilevel converter,FH-MMC)。直流单极接地故障是直流输电系统主要故障类型,在发生直流侧单极接地故障时,混合直流输电需切换运行模式,LCC侧由双极运行转为单极运行,FH-MMC侧通过桥臂输出负电平电压消除交流电压直流偏置以及故障电流。通过对该运行模式下FH-MMC桥臂功率流动特性进行分析可知,上、下桥臂产生能量不平衡问题,导致故障桥臂子模块电容电压持续上升,影响开关器件的安全运行。为此,基于基频环流注入的能量平衡策略提出一种直流单极故障穿越控制策略,保证直流母线单极接地故障下正常极仍可传递一半的额定功率,实现混合直流输电不停机运行。最后,在PSCAD/EMTDC中搭建混合直流输电仿真模型,仿真结果验证了所提控制策略的有效性。 相似文献
3.
4.
针对一种在整流侧和逆变侧分别采用电网换相型换流器(LCC)和模块化多电平换流器(MMC)的新型混合直流输电系统,提出了直流回路的谐波模型。在整流侧采用三脉动谐波电压源,等效了12脉动换流器的谐波输出特性;在逆变侧使用电容串联电感的无源结构作为MMC直流侧等效电路,同时搭建了输电线路及直流滤波器相应的谐波模型。以单极混合直流输电系统为例,对该直流回路进行阻抗-频率扫描,计算出不同情况下该直流回路的谐波阻抗大小,从而对谐振情况进行判断。仿真结果表明:随着线路长度及滤波器组数的增加,谐振频率均有所降低。 相似文献
5.
子模块混合型MMC-HVDC直流故障穿越控制策略 总被引:20,自引:0,他引:20
半桥和全桥子模块混合型模块化多电平换流器在具备直流故障穿越能力的同时降低了开关器件的数量。介绍其拓扑结构以及子模块数量的确定方法。阐述半桥和全桥子模块阀段自身平机理和调制电压基本分配原则,并结合最近电平逼近调制提出一种半桥和全桥阀段间平衡的控制策略。分析直流故障期间换流器的等效电路,为了减少暂态期间直流故障电流对子模块电容电压平衡的影响,提出一种基于虚拟电阻的优化控制策略。整个故障穿越期间无需闭锁换流器,且还能持续保证交流系统对无功功率的需求。基于PSCAD/EMTDC,搭建两端子模块混合型模块化多电平换流器HVDC仿真模型,针对双极直流短路工况进行仿真分析,验证了所提出的控制策略的有效性。 相似文献
6.
混合直流输电系统常会出现不同类型的故障,传统控制方法的故障处理时间过长,对此,研究基于换相换流器(LCC)和模块化多电平换流器(MMC)的混合直流输电系统优化控制方法。根据系统结构特征绘制拓扑结构图,建立LCC数学模型和MMC数学模型;利用三角星型接法和星型接法控制整流侧直流电压,实现整流侧LCC的优化控制;利用电压源逆变器(VSC)双闭环控制器对逆变侧MMC进行优化控制;通过从系统直流侧直接充电,减少中间电流转接过程,利用MMC数学模型计算电压调制波,实现均衡电压,控制系统稳定运行。仿真结果表明,应用所提方法可以在5 s内控制整流站交流故障,面对直流线路单极故障问题,所提方法在5 s内快速反应,将LCC和MMC的电流控制在稳定的区间内,同时对三组电流的控制均有较好的效果,能够实现混合直流输电系统优化控制,快速解决输电系统故障。 相似文献
7.
电网换相换流器和模块化多电平换流器(LCC-MMC)混合直流输电系统兼顾了两种换流器的技术优势和经济优势,具有较好的应用前景。无源网络装设容性滤波装置能够起到平滑交流电压波形、提供电压支撑等作用。首先通过理论推导,建立了含容性滤波装置的模块化多电平换流器数学模型,基于dq理论,提出了模块化多电平换流器的无源解耦控制策略。针对送端电网换相换流器侧交流故障可能导致的功率中断等问题,从电网换相换流器和模块化多电平换流器的控制机理出发,分析了故障阶段及故障后的系统响应特性,并进而提出了送端交流故障穿越附加控制策略。为验证上述控制策略的有效性,在PSCAD/EMTDC内建立了一个LCC-MMC混合直流输电模型。通过受端电压频率变化和送端交流故障仿真,验证了所提控制策略的可行性和有效性。 相似文献
8.
基于电网换相换流器(line commutated converter,LCC)以及模块化多电平换流器(modular multilevel converter,M M C))的混合型高压直流输电技术是实现远距离大容量输电的有效技术手段。为了快速清除直流短路故障,主要有2种实现方法:一是逆变侧换流器采用具有直流故障自清除能力的子模块,如全桥型子模块及箝位双子模块;二是在逆变侧直流出口加装大功率二极管以切断故障后的电流流通通路。该文通过研究不同直流故障处理策略的物理机理及控制流程,对其可行性及适用性进行深入研究。通过在PSCAD/EMTDC中搭建典型模型,考察直流故障下的系统响应特性,对不同处理策略下的系统暂态特性进行综合比较。最后,对基于全桥型子模块的不闭锁穿越式直流故障处理策略进行了仿真验证,仿真结果表明此种策略不适用于真双极直流系统,无法实现直流短路故障的有效清除。 相似文献
9.
由于在建设新的直流输电系统时缺乏足够的输电走廊,越来越多的高压直流线路架设在已有的交流线路输电走廊上。这种做法会使得临近的交流线路在直流线路中感应出基波电压并由此产生环流。电网换相换流器–模块化多电平型电压源换流器(line-commutated converter-modular multilevel converter,LCC-MMC)混合直流输电非常适用于远距离大容量的电力传输,是一种具有广阔应用前景的技术,相比于传统的LCC-HVDC拓扑具有明显的优势。因此,在LCC-MMC混合直流输电系统的规划阶段,有必要在临近交流线路对直流线路的耦合效应这一问题上进行综合的研究分析。该文首先对直流线路上的基波环流在MMC中产生的直流偏置进行理论研究;然后基于LCC-MMC混合系统的等效模型以及快速有效的计算方法,对影响耦合效应的一系列因素进行研究,包括平行架设长度、交直流线路的接近距离、换流器的参数、交流系统的零序电流分量以及故障情况等;最后形成具有一定工程意义的参数对应曲线。 相似文献
10.
11.
随着电压源变换器型高压直流(Voltage-Sourced Converter-Based High-Voltage Direct Current,VSC-HVDC)输电需求的持续增加,模块化多电平变换器(Modular Multilevel Converter,MMC)成为柔性直流输电的研究热点。环流的抑制和子模块电容电压的平衡是MMC控制的研究重点之一。推导了模块化多电平变换器高压直流(Modular Multilevel Converter based HVDC,MMC-HVDC)输电系统的离散数学模型,在此基础上针对五电平MMC的控制目标提出一种改进的具有工程应用价值的模型预测控制策略(Model Predictive Control,MPC)。通过引入误差因子减小了子模块电压波动范围,同时通过MPC与电压排序算法相结合减小了传统MPC的计算量,并实现了HVDC系统传输功率的控制、MMC环流的抑制和MMC子模块中电容电压的平衡。仿真结果验证了所提出的控制策略的有效性。 相似文献
12.
为使模块化多电平换流器(modular multilevel converter,?MMC)具备直流故障自清除能力和电容电压均衡能力,提出了一种新型并联双端口子模块:钳位双全桥子模块(clamp double full bridge submodule,?CD-FBSM)。该子模块器件成本和运行损耗较低,正常工作时相邻子模块之间具有多种协同运行模式,通过特有的并联模式可提高电容电压均衡度。故障闭锁时,模块内部电容并联、模块之间电容串联且反向接入电路,能够可靠阻断故障电流并均衡电容电压,有利于系统快速重启。此外,提出了三阶段故障电流阻断机理分析方法,对CD-FBSM的故障电流阻断过程进行了研究。通过Matlab/Simulink的仿真结果表明,所提子模块电容电压均衡度较高,可快速阻断故障电流,且故障电流阻断过程与理论分析一致。 相似文献
13.
14.
适用于电压源换流器型高压直流输电的模块化多电平换流器最新研究进展 总被引:6,自引:0,他引:6
模块化多电平换流器(modular multilevel converter,MMC)为多电平换流器家族中的一员,其技术特点非常适用于电压源换流器型高压直流(voltage source converter high voltage direct current,VSC-HVDC)输电领域。为了分析MMC的最新研究进展,首先介绍了MMC的拓扑电路及其工作原理,分析了其技术特点和应用领域,比较了其相对于传统2电平和3电平VSC拓扑的优势所在。然后分别从MMC的数学模型、调制策略、子模块电容均压、预充电、内部环流、控制方面、换流阀试验以及其在VSC-HVDC系统中的工程应用等方面,回顾了MMC目前在国内外的最新研究进展和工程应用现状,并指出了MMC自身的缺点和今后亟待研究的关键问题。已有的研究表明,MMC在电力系统中有着广阔的应用前景,是未来高压直流输电技术的一个重要发展方向。 相似文献
15.
模块化多电平换流器(modular multilevel converter,MMC)在HVDC输电中得到了广泛的应用,文中针对MMC存在的电容电压均衡问题,从工程角度出发,提出了一种适用于现场可编程逻辑门阵列(field programmable gate array,FPGA)的电容电压均衡控制算法。该算法采用动态分组排序,可有效降低排序的运算量和提高排序速度;同时算法中又遵循了避免不必要的开关动作的原则,可降低器件的开关频率和减小开关损耗。最后,基于RT-LAB实时仿真系统构建了一个基于MMC-HVDC的双端风电场并网系统硬件在环半实物仿真平台,在该平台上验证了所提排序算法的可行性,同时在稳态和暂态工况下,验证了基于MMC-HVDC的风电场并网系统的控制效果。 相似文献
16.
送端采用电网换相换流器(LCC)、受端采用全半桥子模块混合型模块化多电平变流器(FHMMC)的LCC-FHMMC混合直流输电系统,当受端交流系统发生故障时,受端交流电压跌落,受端功率传输受阻,盈余的功率导致子模块电容过电压,甚至可能造成设备的严重损坏。为此,提出了一种基于FHMMC直流电压降压运行的受端交流系统故障穿越控制策略,使其直流电压始终低于逆变侧交流母线的电压有效值。同时,整流侧LCC保持常规的定直流电流控制,保证逆变侧的直流电流在额定值附近运行,从而实现了进入直流系统的有功功率与逆变器向受端交流系统输出的有功功率之间的平衡。最后在PSCAD/EMTDC仿真平台上对LCC-FHMMC混合直流输电系统受端交流系统发生的对称故障和不对称故障分别进行了仿真分析,仿真结果验证了所提控制策略能够快速有效地穿越受端交流系统故障,并抑制子模块电容过电压。 相似文献
17.
针对模块化多电平变换器(MMC)存在的电容电压在不同工况下易出现波动的问题,设计了一种基于环流注入的MMC电容电压平衡控制策略,其中环流参考是基于桥臂电流瞬时值和对应调制信号获得的.相对于传统环流注入方案,新方案不需要确定输出电流的幅值和相位,具有一定的优势.此外,电容电压平衡控制方案中还设计了能够跟踪环流参考的闭环控... 相似文献
18.
介绍了模块化多电平换流器的结构及原理,并搭建了数学模型。基于MMC的电容电压波动和环流问题,设计了MMC的装置级控制器。最后,通过Matlab/Simulink搭建了包含该控制器的MMC仿真模型。结果证明,该控制方法可有效地平衡换流器子模块的电容电压及抑制内部环流,并且不会对MMC外部输出的交流电压和电流产生负面影响。 相似文献
19.
综合电网换相换流器(LCC)和模块化多电平换流器(MMC)的优点,并针对我国西电东送的实际场景,对如下3种目前比较有应用价值的混合直流输电系统方案进行研究:方案1的送端采用LCC,受端采用半桥子模块型MMC串联二极管阀;方案2的送端采用LCC,受端采用全桥子模块与半桥子模块构成的子模块混合型MMC;方案3的送端采用LCC,受端采用LCC和半桥子模块型MMC构成的串联混合型换流器。首先,分别介绍了3种混合直流输电系统的拓扑结构、数学模型及控制方式;然后,在PSCAD/EMTDC中搭建了3种混合直流输电系统,对3种混合直流系统在送端交流系统故障和受端交流系统故障情景下的响应特性进行对比分析;最后,基于仿真结果总结了每种拓扑结构的优劣势。仿真结果表明,在送端交流系统故障的情景下,方案1可能会出现功率中断;在受端交流系统故障的情景下,方案1的故障响应特性要优于其他2种方案。 相似文献
20.
混合级联多端直流系统整流器的反下垂特性削减了系统吸收功率盈余补偿的能力,进而导致故障穿越能力受限。提出了一种利用设备自身过流裕度抵御交流故障的保护方案,通过分阶段的协调控制策略实现不同程度的故障穿越。直流受端多个换流器按照预先制定的运行模式协调配合,疏散模块化多电平换流器(MMC)组送出功率能力受阻产生的系统盈余功率。仿真结果表明,该协调故障穿越策略无需在直流侧配置泄能装置,就可实现在不同故障深度下快速稳定过渡到预先设定的稳定运行点,提高了混合级联多端直流系统的故障穿越能力。 相似文献