首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Optimized AlGaN/AlN/GaN high electron mobility transistors (HEMTs) structures were grown on 2-in. semi-insulating (SI) 6H-SiC substrate by metal–organic chemical vapor deposition (MOCVD). The 2-in. HEMT wafer exhibited a low average sheet resistance of 305.3 Ω/sq with a uniformity of 3.85%. The fabricated large periphery device with a dimension of 0.35 μm × 2 mm demonstrated high performance, with a maximum DC current density of 1360 mA/mm, a transconductance of 460 mS/mm, a breakdown voltage larger than 80 V, a current gain cut-off frequency of 24 GHz and a maximum oscillation frequency of 34 GHz. Under the condition of continuous-wave (CW) at 8 GHz, the device achieved 18.1 W output power with a power density of 9.05 W/mm and power-added-efficiency (PAE) of 36.4%. While the corresponding results of pulse condition at 8 GHz are 22.4 W output power with 11.2 W/mm power density and 45.3% PAE. These are the state-of-the-art power performance ever reported for this physical dimension of GaN HEMTs based on SiC substrate at 8 GHz.  相似文献   

2.
A recessed gate AlGaN/GaN high-electron mobility transistor (HEMT) on sapphire (0 0 0 1), a GaN metal-semiconductor field-effect transistor (MESFET) and an InGaN multiple-quantum well green light-emitting diode (LED) on Si (1 1 1) substrates have been grown by metalorganic chemical vapor deposition. The AlGaN/GaN intermediate layers have been used for the growth of GaN MESFET and LED on Si substrates. A two-dimensional electron gas mobility as high as 9260 cm2/V s with a sheet carrier density of 4.8×1012 cm−2 was measured at 4.6 K for the AlGaN/GaN heterostructure on the sapphire substrate. The recessed gate device on sapphire showed a maximum extrinsic transconductance of 146 mS/mm and a drain–source current of 900 mA/mm for the AlGaN/GaN HEMT with a gate length of 2.1 μm at 25°C. The GaN MESFET on Si showed a maximum extrinsic transconductance of 25 mS/mm and a drain–source current of 169 mA/mm with a complete pinch-off for the 2.5-μm-gate length. The LED on Si exhibited an operating voltage of 18 V, a series resistance of 300 Ω, an optical output power of 10 μW and a peak emission wavelength of 505 nm with a full-width at half-maximum of 33 nm at 20 mA drive current.  相似文献   

3.
Cutoff frequency, breakdown voltage, and the transconductance of wurtzite and zincblende phase GaN MESFETs have been calculated using a self-consistent, full band Monte Carlo simulation. The effect of interface states on the device performance is modeled by including uniformly depleted regions at the device surface under the passivation layers. It is found that the drain current increases gradually with increasing drain-source voltage at the onset of breakdown for both phases. The calculated breakdown voltage for the wurtzite device is considerably higher than the breakdown voltage calculated for the zincblende device. On the other hand, the zincblende device is calculated to have higher transconductance and cutoff frequency than the wurtzite device. The higher breakdown voltage of the wurtzite phase device is attributed to the higher density of electronic states for this phase compared to the zincblende phase. The higher cutoff frequency and transconductance of the zincblende phase device is apparently due to the greater electron velocity overshoot for this phase compared to that for the wurtzite phase. The maximum cutoff frequency and transconductance of a 0.1 μm gate-length zincblende GaN MESFET are calculated to be 220 GHz and 210 mS/mm, respectively. The corresponding quantities for the wurtzite GaN device are calculated to be 160 GHz and 158 mS/mm  相似文献   

4.
An AlGaN/GaN recessed-gate MOSHEMT was fabricated on a sapphire substrate. The device, which has a gate length of 1 μm and a source-drain distance of 4 μm, exhibits a maximum drain current density of 684 mA/mm at Vgs = 4 V with an extrinsic transconductance of 219 mS/mm. This is 24.3% higher than the transconductance of conventional AlGaN/GaN HEMTs. The cut-off frequency and the maximum frequency of oscillation are 9.2 GHz and 14.1 GHz, respectively. Furthermore, the gate leakage current is two orders of magnitude lower than for the conventional Schottky contact device.  相似文献   

5.
研制了一款X波段增强型AlGaN/GaN高电子迁移率晶体管(HEMT)。在3英寸(1英寸=2.54 cm)蓝宝石衬底上采用低损伤栅凹槽刻蚀技术制备了栅长为0.3μm的增强型AlGaN/GaN HEMT。所制备的增强型器件的阈值电压为0.42 V,最大跨导为401 mS/mm,导通电阻为2.7Ω·mm。器件的电流增益截止频率和最高振荡频率分别为36.1和65.2 GHz。在10 GHz下进行微波测试,增强型AlGaN/GaN HEMT的最大输出功率密度达到5.76 W/mm,最大功率附加效率为49.1%。在同一材料上制备的耗尽型器件最大输出功率密度和最大功率附加效率分别为6.16 W/mm和50.2%。增强型器件的射频特性可与在同一晶圆上制备的耗尽型器件相比拟。  相似文献   

6.
通过利用MOCVD生长的高质量蓝宝石衬底InAlN/AlN/GaN异质结材料,获得了高的二维电子气面密度,其值为1.65×10<'13>cm<'-2>.通过该结构制备了0.15 μm栅长InAlN/AIN/GaN HEMT器件,获得了相关的电学特性:最大电流密度为1.3A/mm,峰值跨导为260mS/ram,电流增益截...  相似文献   

7.
蓝宝石衬底AlGaNöGaN 功率HEM Ts 研制   总被引:3,自引:0,他引:3       下载免费PDF全文
基于蓝宝石衬底的高微波特性 Al Ga N/Ga N HEMTs功率器件 ,器件采用了新的欧姆接触和新型空气桥方案。测试表明 ,器件电流密度 0 .784A/mm,跨导 1 97m S/mm,关态击穿电压 >80 V,截止态漏电很小 ,栅宽 1 mm的器件的单位截止频率 ( f T)达到 2 0 GHz,最大振荡频率 ( fmax) 2 8GHz,2 GHz脉冲测试下 ,栅宽 0 .75 mm器件 ,功率增益1 1 .8d B,输出功率 3 1 .2 d Bm,功率密度 1 .75 W/mm。  相似文献   

8.
A low-voltage single power supply enhancement-mode InGaP-AlGaAs-InGaAs pseudomorphic high-electron mobility transistor (PHEMT) is reported for the first time. The fabricated 0.5/spl times/160 /spl mu/m/sup 2/ device shows low knee voltage of 0.3 V, drain-source current (I/sub DS/) of 375 mA/mm and maximum transconductance of 550 mS/mm when drain-source voltage (V/sub DS/) was 2.5 V. High-frequency performance was also achieved; the cut-off frequency(F/sub t/) is 60 GHz and maximum oscillation frequency(F/sub max/) is 128 GHz. The noise figure of the 160-/spl mu/m gate width device at 17 GHz was measured to be 1.02 dB with 10.12 dB associated gain. The E-mode InGaP-AlGaAs-InGaAs PHEMT exhibits a high output power density of 453 mW/mm with a high linear gain of 30.5 dB at 2.4 GHz. The E-mode PHEMT can also achieve a high maximum power added efficiency (PAE) of 70%, when tuned for maximum PAE.  相似文献   

9.
The DC and RF performance of 30 nm gate length enhancement mode (E-mode) InAlN/AlN/GaN high electron mobility transistor (HEMT) on SiC substrate with heavily doped source and drain region have been investigated using the Synopsys TCAD tool. The proposed device has the features of a recessed T-gate structure, InGaN back barrier and Al2O3 passivated device surface. The proposed HEMT exhibits a maximum drain current density of 2.1 A/mm, transconductance gm of 1050 mS/mm, current gain cut-off frequency ft of 350 GHz and power gain cut-off frequency fmax of 340 GHz. At room temperature the measured carrier mobility (μ), sheet charge carrier density (ns) and breakdown voltage are 1580 cm2/(V·s), 1.9×1013 cm-2, and 10.7 V respectively. The superlatives of the proposed HEMTs are bewitching competitor or future sub-millimeter wave high power RF VLSI circuit applications.  相似文献   

10.
高性能1mm AlGaN/GaN功率HEMTs研制   总被引:3,自引:4,他引:3  
报道了基于蓝宝石衬底的高性能1mm AlGaN/GaN HEMTs功率器件.为了提高微波功率器件性能,采用新的欧姆接触和新型空气桥方案.测试表明,器件电流密度为0.784A/mm,跨导197mS/mm,击穿电压大于40V,截止态漏电较小,1mm栅宽器件的单位截止频率达到20GHz,最大振荡频率为28GHz,功率增益为11dB,功率密度为1.2W/mm,PAE为32%,两端口阻抗特性显示了在微波应用中的良好潜力.  相似文献   

11.
GaAs power MESFET's with 0.5-μm T-shaped gate for Ku-band power applications have been developed using a new self-aligned and optical lithography. It displays a maximum current density of 350 mA/mm, an uniform transconductance of 150 mS/mm and a high gate-to-drain breakdown voltage of 35 V. Both the high breakdown voltage and the uniform transconductance were achieved by the new MESFET design incorporating an undoped GaAs cap and a thick lightly doped active layers. The breakdown voltage is the highest one among the values reported on the power devices. The device exhibits 0.61 W/mm power density and 47% power added efficiency with 9.0 dB associated gain at a drain bias of 12 V and an operation frequency of 12 GHz  相似文献   

12.
在SiC衬底上制备了InAlN/GaN 高电子迁移率晶体管(HEMTs),并进行了表征。为提高器件性能,综合采用了多种技术,包括高电子浓度,70 nm T型栅,小的欧姆接触电阻和小源漏间距。制备的InAlN/GaN器件在栅偏压为1 V时得到的最大饱和漏电流密度为1.65 A/mm,最大峰值跨导为382 mS/mm。70 nm栅长器件的电流增益截止频率fT和最大振荡频率fmax分别为162 GHz和176 GHz。  相似文献   

13.
We report the DC and RF characteristics of AlN/GaN high electron mobility transistors(HEMTs) with the gate length of 100 nm on sapphire substrates. The device exhibits a maximum drain current density of 1.29 A/mm and a peak transconductance of 440 m S/mm. A current gain cutoff frequency and a maximum oscillation frequency of 119 GHz and 155 GHz have been obtained, respectively. Furthermore, the large signal load pull characteristics of the AlN/GaN HEMTs were measured at 29 GHz. An output power density of 429 m W/mm has been demonstrated at a drain bias of 10 V. To the authors’ best knowledge, this is the earliest demonstration of power density at the Ka band for Al N/Ga N HEMTs in the domestic, and also a high frequency of load-pull measurements for Al N/Ga N HEMTs.  相似文献   

14.
An 0.12 μm gate length direct ion-implanted GaAs MESFET exhibiting excellent DC and microwave characteristics has been developed. By using a shallow implant schedule to form a highly-doped channel and an AsH3 overpressure annealing system to optimize the shallow dopant profile, the GaAs MESFET performance was further improved. Peak transconductance of 500 mS/mm was obtained at Ids =380 mA/mm. A noise figure of 0.9 dB with associated gain of 8.9 dB were achieved at 18 GHz. The current gain cutoff frequency fmax of 160 GHz indicates the suitability of this 0.12 μm T-gate device for millimeter-wave IC applications  相似文献   

15.
The realisation of 0.1 mum gate AlGaN/GaN high electron mobility transistors grown on high-resistivity silicon substrates is reported. A maximum current density of 750 mA/mm and an extrinsic transconductance of 225 mS/mm are achieved. The devices feature a record current gain cutoff frequency as high as f T=90 GHz, the highest value ever reported from a GaN-based device grown on a silicon substrate. The results demonstrate the great potential of GaN-on-silicon technology for low-cost millimetre-wave applications.  相似文献   

16.
A Pd/TiO2/Si MOS sensor (Pdtisin sensor) is proposed for the detection of hydrogen gas. The sensor is fabricated on a p-type 1 1 1 silicon wafer having resistivity of 3–6 Ω cm. The thickness of TiO2 in this structure is about 600 nm. The capacitance–voltage (CV) and conductance–voltage (GV) characteristics of the device is observed on the exposure of hydrogen gas at room temperature. The mechanism of hydrogen sensing of titanium dioxide-based MOS sensor (MOS capacitor) has been investigated by evaluating the change in flat-band voltage (VFB) and fixed surface state density of the device in presence of hydrogen gas. The device exhibits very large parallel shift in CV as well in GV characteristics. The possible mechanism on Pd/TiO2 and TiO2/Si surface in presence of hydrogen gas has been proposed. The response and recovery time of the device is also measured at room temperature.  相似文献   

17.
n沟道4H-SiC MESFET研究   总被引:1,自引:1,他引:0  
报告了4H-SiCMESFET的研制。通过对SiC关键工艺技术进行研究,设计出初步可行的工艺流程,并且制成单栅宽120μmn沟道4H-SiCMESFET,其主要直流特性为在Vds=30V时,最大漏电流密度Idss为56mA/mm,最大跨导Gm为15mS/mm;漏源击穿电压最高达150V;微波特性测试结果在fo=1GHz、Vds=32V时该器件最大输出功率7.05mW,在fo=1.8GHz、Vds=32V时最大输出功率3.1mW。  相似文献   

18.
AlN/GaN Insulated-Gate HFETs Using Cat-CVD SiN   总被引:1,自引:0,他引:1  
The authors fabricated SiN/AlN/GaN metal–insulator–semiconductor heterostructure field-effect transistors (MIS-HFETs) using SiN passivation by catalytic chemical vapor deposition (Cat-CVD). Cat-CVD SiN increased the electron density of AlN/GaN HFETs by compensating the surface depletion of the two-dimensional electron gas. The MIS-HFETs had a maximum drain current density of 0.95 A/mm and a peak extrinsic transconductance of 211 mS/mm. A current-gain cutoff frequency of 107 GHz and maximum oscillation frequency of 171 GHz were obtained for the 60- and 70-nm-gate devices, respectively.  相似文献   

19.
An enhancement-mode AlGaN/GaN HEMT with a threshold voltage of 0.35 V was fabricated by fluorine plasma treatment.The enhancement-mode device demonstrates high-performance DC characteristics with a saturation current density of 667 mA/mm at a gate bias of 4 V and a peak transconductance of 201 mS/mm at a gate bias of 0.8 V.The current-gain cut-off frequency and the maximum oscillation frequency of the enhancement-mode device with a gate length of μm are 10.3 GHz and 12.5 GHz,respectively,which is comparable with the depletion-mode device.A numerical simulation supported by SIMS results was employed to give a reasonable explanation that the fluorine ions act as an acceptor trap center in the barrier layer.  相似文献   

20.
报道了基于AlN/GaN异质结的Ka波段低噪声放大器的研制结果.在SiC衬底上生长AlN/GaN异质结材料结构,采用电子束直写工艺制备了栅长70 nm的"T"型栅结构.器件最大电流密度为1.50 A/mm,最大跨导为650 mS/mm,通过S参数测试外推特征频率和最大频率分别为105 GHz和235 GHz.基于70 ...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号