共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
针对
人脸图像中表情变化、遮挡、光照的问题,本文提出了一种新颖的基于低秩分块稀疏表示的
人脸识别算法。该算法采用了一种新的结构不相关的低秩矩阵恢复方法,同时采用离散余弦
变换方法联合处理人脸图像中遮挡、掩饰和光照的问题,对处理过的图片采用一种独特的重
叠分块方法,利用冗余信息有效地提高了算法的识别率。在分类阶段,利用Alignment pool
ing的方法,有效地提高了识别速度。该算法在标准人脸数据库上进行了多次实验,实验结
果表明:与现有人脸识别算法相比,算法的识别准确率和计算效率都得到了一致提高。 相似文献
3.
可变光照和有遮挡人脸识别是人脸识别问题中的一个难点。受到鲁棒主成分分析法(RPCA)和稀疏表示分类法(SRC)的启发,提出一种基于低秩表示(LRR)中稀疏误差图像的可变光照有遮挡人脸识别算法。在训练阶段,利用LRR计算每类人脸低秩数据矩阵,在此基础上求解每类人脸图像低秩映射矩阵,通过各类低秩映射矩阵将未知人脸图像投影得到每类下的低秩数据矩阵和稀疏误差矩阵,为了有效提取稀疏误差图像中的鉴别信息,分别对稀疏误差图像进行边缘检测和平滑度分析,设计了基于两者加权和的类别判据。在Extended Yale B和AR两个数据库上进行了详细的实验分析,实验结果与其它算法相比较有明显提高,证实了所提算法的有效性和鲁棒性。 相似文献
4.
在实际的人脸识别中,给定的训练图像往往存在遮挡和噪声,导致稀疏表示分类(SRC)算法的性能下降。针对上述问题,提出一种基于结构化低秩表示(SLR)和低秩投影的人脸识别方法--SLR_LRP。首先通过SLR对原始训练样本进行低秩分解得到干净的训练样本,根据原始训练样本和恢复得到的干净训练样本得到一个低秩投影矩阵;然后将测试样本投影到该低秩投影矩阵;最后使用SRC对恢复后的测试样本进行分类。在AR人脸库和Extended Yale B人脸库上的实验结果表明,SLR_LRP可以有效处理样本中存在的遮挡和像素破坏。 相似文献
5.
目前的人脸识别算法常常忽视训练过程中噪声的影响,特别是在训练数据和待测数据都受到噪声污染的情况下,识别性能会明显下降。针对含有光照变化、伪装、遮挡及表情变化等较大噪声的人脸识别问题,提出了一种基于低秩子空间投影和Gabor特征的稀疏表示人脸识别算法。该算法首先通过低秩矩阵恢复算法得到训练样本的潜在低秩结构和稀疏误差结构;然后利用主成分分析法找到低秩结构的Gabor特征所在低秩子空间的变换矩阵;再通过变换矩阵将所有样本的Gabor特征向量投影到低秩子空间上,在该低秩子空间上使用稀疏表示分类算法进行最终的分类识别。在Extend Yale B和AR数据库上的实验表明,新算法具有较高的识别率和较强的抗干扰能力。 相似文献
6.
针对训练样本和测试样本均受到严重的噪声污染的人脸识别问题,传统的子空间学习方法和经典的基于稀疏表示的分类(SRC)方法的识别性能都将急剧下降。另外,基于稀疏表示的方法也存在算法复杂度较高的问题。为了在一定程度上缓解上述问题,提出一种基于判别低秩矩阵恢复和协同表示的遮挡人脸识别方法。首先,低秩矩阵恢复可以有效地从被污损的训练样本中恢复出干净的、具备低秩结构的训练样本,而结构非相关性约束的引入可以有效提高恢复数据的鉴别能力。然后,通过学习原始污损数据与恢复出的低秩数据之间的低秩投影矩阵,将受污损的测试样本投影到相应的低维子空间,以修正污损测试样本。最后,利用协同表示的分类方法(CRC)对修正后的测试样本进行分类,获取最终的识别结果。在Extended Yale B和AR数据库上的实验结果表明,本文方法对遮挡人脸识别具有更好的识别性能。 相似文献
7.
针对人脸识别中的图像存在噪声等情况,提出基于鉴别性低秩表示及字典学习的算法。使用鉴别性低秩子空间恢复算法(discriminative low-rank representation, DLRR)获得类别间尽可能独立且干净的训练样本,然后通过引入基于Fisher准则的字典学习(Fisher Discrimination Dictionary Learning, FDDL)方法得到结构化字典,其子字典对对应的类有较好的表示能力,约束编码系数具有较小类内散列度和较大类间散列度。最后对测试样本稀疏线性表示时正确类别的样本贡献更大。在标准人脸数据库上的实验结果表明该算法有较好性能。 相似文献
8.
目的 由于受到光照变化、表情变化以及遮挡的影响,使得采集的不同人的人脸图像具有相似性,从而给人脸识别带来巨大的挑战,如果每一类人有足够多的训练样本,利用基于稀疏表示的分类算法(SRC)就能够取得很好地识别效果。然而,实际应用中往往无法得到尺寸大以及足够多的人脸图像作为训练样本。为了解决上述问题,根据基于稀疏表示理论,提出了一种基于联合判别性低秩类字典以及稀疏误差字典的人脸识别算法。每一类的低秩字典捕捉这类的判别性特征,稀疏误差字典反映了类变化,比如光照、表情变化。方法 首先利用低秩分解理论得到初始化的低秩字典以及稀疏字典,然后结合低秩分解和结构不相干的理论,训练出判别性低秩类字典和稀疏误差字典,并把它们联合起来作为测试时所用的字典;本文的方法去除了训练样本的噪声,并在此基础上增加了低秩字典之间的不相关性,能够提高的低秩字典的判别性。再运用l1范数法(同伦法)求得稀疏系数,并根据重构误差进行分类。结果 针对Extended Yale B库和AR库进行了实验。为了减少算法执行时间,对于训练样本利用随机矩阵进行降维。本文算法在Extended Yale B库的504维每类32样本训练的识别结果为96.9%。在无遮挡的540维每类4样本训练的AR库的实验结果为83.3%,1 760维的结果为87.6%。有遮挡的540维每类8样本训练的AR库的结果为94.1%,1 760维的结果为94.8%。实验结果表明,本文算法的结果比SRC、DKSVD(Discriminative K-SVD)、LRSI(Low rank matrix decomposition with structural incoherence)、LRSE+SC(Low rank and sparse error matrix+sparse coding)这4种算法中识别率最高的算法还要好,特别在训练样本比较少的情况下。结论 本文所提出的人脸识别算法具有一定的鲁棒性和有效性,尤其在训练样本较少以及干扰较大的情况下,能够取得很好地识别效果,适合在实际中进行应用。 相似文献
9.
基于回归分析的人脸识别方法在处理不完备数据矩阵时,先对矩阵进行填充,再使用人脸识别方法,因此会降低分类性能.为了更有效地执行关于不完备数据的识别,文中将低秩矩阵填充和低秩表示学习整合在同一个模型,提出基于低秩表示和低秩矩阵填充的人脸识别方法.通过最小化表示系数和矩阵秩交替计算样本低秩表示系数矩阵和恢复矩阵缺失项,再使用最近邻分类器实现分类.在一些公开人脸数据集上的实验表明,在训练样本矩阵元素随机缺失时,文中方法可以有效提高识别精度及降低填充误差. 相似文献
10.
11.
12.
人脸识别的主要难度在于,受到光照变化、表情变化以及遮挡的影响,会使得采集的不同人的人脸图像具有相似性。为有效解决基于稀疏表示的分类算法(Sparse Representation-based Classification,SRC)在人脸训练样本不足时会导致识别率降低和稀疏表示求解效率较低的问题,提出了基于判别性低秩分解与快速稀疏表示分类(Low Rank Recovery Fast Sparse Representation-based Classification,LRR_FSRC)的人脸识别算法。利用低秩分解理论得到低秩恢复字典以及稀疏误差字典,结合低秩分解和结构不相干理论,训练出判别性低秩类字典和稀疏误差字典,并把它们结合作为测试时所用的字典;用坐标下降法来求解稀疏系数以提高了计算效率;根据重构误差实现测试样本的分类。在YALE和ORL数据库上的实验结果表明,提出的基于LRR_FSRC的人脸识别方法具有较高的识别率和计算效率。 相似文献
13.
当前的人脸识别算法在理想环境下的识别正确率高,自适应能力强;但是在非理想环境下,人脸识别正确率急剧下降。为了提高人脸识别结果的稳定性,设计了稀疏表示和支持向量机相融合的非理想环境人脸识别算法。首先,提取非理想环境人脸的特征,并构建非理想环境人脸识别的特征字典;然后,采用特征字典对非理想环境人脸识别训练样本和测试样本进行处理,构建非理想环境人脸识别的学习样本;最后,采用支持向量机建立非理想环境人脸识别的分类器来对非理想环境人脸进行识别,并采用多个标准人脸数据库对所提非理想环境人脸识别算法进行测试。文中算法的非理想环境人脸识别正确率高,误识率和拒识率低,相对于其他人脸识别算法,其更适应环境的变化,对非理想环境人脸识别的整体效果更优,而且提高了非理想环境人脸识别的效率,具有十分明显的优越性。 相似文献
14.
15.
16.
17.
超完备稀疏表示法可以有效解决人脸识别领域中由于光照、表情变化、遮挡和噪声问题等原因造成的性能瓶颈.基于超完备稀疏表示法,将人脸识别问题看作是为多个线性回归模型中的分类问题,提出了一种基于Contourlet域的稀疏表示分类器,改进了利用主成分分析进行数据预处理所造成的鉴别信息丢失,提升了稀疏表示分类器的鉴别能力.在ORL库、Yale库、扩展Yale库和PIE库上大量实验结果验证了算法的有效性. 相似文献
18.
针对人脸识别中由于姿态、光照及噪声等影响造成的识别率不高的问题,提出一种基于多任务联合判别稀疏表示的人脸识别方法。首先提取人脸的局部二值特征,并基于多个特征建立一个联合分类误差与表示误差的过完备字典学习目标函数。然后,使用一种多任务联合判别字典学习方法,将多任务联合判别字典与最优线性分类器参数联合学习,得到具有良好表征和鉴别能力的字典及相应的分类器,进而提高人脸识别效果。实验结果表明,所提方法相比其他稀疏人脸识别方法具有更好的识别性能。 相似文献
19.
20.
单样本人脸识别因其在现实生活中的广泛应用而成为人脸识别领域的热门话题。单张训练样本条件下训练样本的缺少和复杂的类内人脸表情、光照、遮挡变化给单样本人脸识别研究带来困难。传统的基于稀疏表示的人脸识别方法需要大量的训练样本构成过完备的字典,因而在单样本条件下识别效果明显下滑。针对这一问题,提出一种基于有监督自编码器的带变化人脸样本生成方法,在保留身份信息的同时自动生成带变化的人脸图像用于单样本条件下的字典扩充,一定程度上缓解了单样本条件下的欠采样问题,弥补了训练集和测试集间的人脸变化信息差异,使得传统的稀疏表示方法能够适用于单样本人脸识别问题。在公共数据库上的实验结果不仅证明了该方法的有效性,而且对测试集中不同的人脸变化也展现出了较强的鲁棒性。 相似文献