首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 30 毫秒
1.
针对大数据量的入侵检测算法计算复杂度过高的问题,提出一种基于信息熵rough set的多层凝聚入侵检测算法。首先,利用粗糙集对入侵检测数据进行预处理和属性约简,防止算法陷入“维数陷阱”;其次,用粗糙集熵重要测度权重距离代替多层凝聚算法的欧式距离计算个体相似度,实现粗糙集预处理与多层凝聚算法的对接;最后,通过实验表明,基于信息熵rough set的多层凝聚入侵检测算法能够更有效的对入侵数据进行检测。  相似文献   

2.
基于粗糙集理论的权重确定方法研究   总被引:3,自引:4,他引:3  
针对属性权重完全未知且属性值以专家经验给出的多属性决策问题,提出了利用属性重要度计算客观权重的分配方法。根据粗糙集中的相对正域概念,探讨了如何运用属性重要度确定各属性的客观权重。决策者可以通过经验因子的选取来调整客观权重和主观权重所占的比例,通过实例说明该方法更加有效合理。  相似文献   

3.
为了提高无线动态压缩感知网络的入侵检测能力,提出一种基于多层交叉熵的网络入侵数据自主防御系统设计方法,构建网络入侵数据检测方法,采用大数据挖掘技术进行无线动态压缩感知网络的入侵大数据挖掘,对挖掘的入侵数据采用频谱超分辨识别方法进行特征提取,构建无线动态压缩感知网络入侵检测的动态多层数据分布结构模型,采用关联映射方法进行网络入侵数据的信号结构重组,结合模糊自适应调度方法进行入侵数据的多层交叉熵调度,根据入侵数据的异常性特征分布实现自主检测和入侵特征定位。采用嵌入式的Linux开发工具进行网络入侵数据自主防御系统设计,结合程序加载和交叉编译实现入侵检测算法的自动读写和检测输出。测试结果表明,采用该方法进行网络入侵数据自主防御系统设计,提高了对入侵数据的检测主动性和准确性,从而提高了网络安全性。  相似文献   

4.
基于粗糙集-神经网络的入侵检测方法研究   总被引:2,自引:0,他引:2  
提出了一种融合粗糙集与神经网络的入侵检测方法。首先用粗糙集约简属性、简化神经网络设计,然后通过神经网络进行入侵检测。实验结果表明该方法优于其他同类方法。  相似文献   

5.
针对现有粒度权重的确定方法主观性较强的问题,提出一种基于粒度信息量的权重确定方法。首先,将信息量引入粗糙集的下近似分布中,定义粗糙集下近似分布中粒度集的信息量;其次,基于信息量定义了粒度的重要度,以粒度的重要度作为启发信息,设计了基于信息量来确定粒度权重的综合方法;通过引入权重系数,决策者根据实际情况选择粒度权重的确定方式:经验主导型、客观主导型。最后,通过实例验证了算法的有效性。分析结果发现,经验主导型的确定方法强化了非核粒度的重要性,客观主导型的确定方法强化了核粒度的重要性。  相似文献   

6.
在分析入侵检测方法的基础上,将粗糙集理论引入入侵检测方法,提出一种改进的基于粗糙集的自适应网络入侵检测方法。通过对入侵数据权值离散化预处理,属性知识约简,规则提取与过滤,提高网络入侵数据的检测率。与基于BP-神经网络的方法,基于专家系统的(ES)的方法,以及普通的基础粗糙集的入侵检测方法进行实验对比,通过实验数据,证明该方法的有效性。  相似文献   

7.
基于邻域粗糙集的入侵检测   总被引:3,自引:0,他引:3  
针对入侵检测系统存在的高漏报率和误报率,提出了一种基于邻域粗糙集的入侵检测方法.该方法在粗糙集理论的基础上引入邻域概念,这样便无需对数据进行离散化处理,可以减少信息损失.实验结果表明:该方法可选择出更为重要的属性组合,从而获得较高的检测率和较低的漏报率与误报率.  相似文献   

8.
基于粗糙集数据挖掘和分类集成学习的网络入侵检测模型   总被引:2,自引:0,他引:2  
基于多个特征或多个模型的集成(Ensemble)学习技术是智能网络入侵检测的重要研究方向,在现有研究基础上提出基于粗糙集分类、模型分发和攻击归类检测,并加以集成的学习式网络入侵检测模型,该模型不仅能提高网络入侵检测系统检测率,同时还结合了粗糙集能处理不确定信息、生成规则具有高解释性、特征排序在获得检测规则前完成等优点。  相似文献   

9.
在网络安全领域中,用熵值分析网络中的异常流量是一个较为常用的异常入侵检测方法。总结已知入侵检测方法的分类,并给出各种方法的应用场景及优缺点。结合信息熵、相对熵、条件熵、活跃熵等熵值理论在入侵检测领域的研究,概述其研究现状,总结不同的熵值理论的应用场景和不足之处。最后讨论基于熵的入侵检测方法的改进方向。  相似文献   

10.
基于粗糙集的入侵检测方法研究   总被引:1,自引:0,他引:1  
为了改善入侵检测系统的性能,常采用特征提取的方法精简初始数据,以减轻系统的处理负荷,提高检测速度。本文首先采用粗糙集理论对入侵检测系统进行了形式化描述,以信息熵作为测度对连续数值属性进行离散化,使用知识约简对入侵检测的属性特征进行提取,通过信息增益控制属性特征的约简过程,有效剔除了冗余特征,减少了系统的处理负荷,提高了系统的检测时效。实验证实所提出的方法使系统对于PROBING、DoS等典型攻击的训练时间分别缩短2.8和3.2倍,而检测速度分别提高3.3和3.8倍。  相似文献   

11.
一种基于粗集理论的分类规则挖掘的实现方法   总被引:8,自引:0,他引:8  
研究各种高性能和高可扩展性的分类算法是数据挖掘面临的主要问题之一。基于粗集理论的分类规则挖掘是一种重要的方法,在分析有关算法的基础上提出一种改进方法,并通过实例证明了该方法的效率有所提高。此外,还提出了一种分类规则约简方法,使挖掘的结果更简洁、更易理解。  相似文献   

12.
信号识别是侦察系统信号处理的目的,是整个雷达对抗信号处理中关键性的一个环节.为解决雷达信号的智能识别问题,研究了将粗糙集和模糊模式识别法紧密结合的雷达信号识别模型,即先用粗糙集属性重要性定义了雷达信号各特征参数的识别权重,再结合模糊模式识别的方法对雷达信号进行匹配识别.该方法既充分运用了原始数据又体现出雷达信号自身的特点,通过实例验证并分析了此法的实用性和有效性.  相似文献   

13.
网络信息浩如烟海又纷繁芜杂,从中掌握最有效的信息是信息处理的一大目标,而文本分类是组织和管理数据的有力手段.由于最大熵模型可以综合观察到的各种相关或不相关的概率知识,具有对许多问题的处理都可以达到较好的结果的优势,将最大熵模型引入到中文文本分类的研究中,并通过使用一种特征聚合的算法改进特征选择的有效性.实验表明与Bayes、KNN和SVM这三种性能优越的算法相比,基于最大熵的文本分类算法可取得较之更优的分类精度.  相似文献   

14.
传统的随机森林在网络入侵检测中收敛速度慢,并且学习性能不够完善。为消除原始入侵检测数据中的冗余信息,提出一种基于信息增益和粗糙集的随机森林入侵检测方法。使用信息增益对数据的各个属性进行相关分析,删除冗余属性,减小属性简约的时间复杂度;利用粗糙集理论从数据中提取分明函数,求得属性简约;使用随机森林分类器进行分类。实验结果表明,该方法收敛速度较快,在召回率和精度方面都要高于传统的随机森林方法,尤其是在训练样本充足的网络环境下,效果更加明显。  相似文献   

15.
一种基于粗集理论属性约简的粗化算法   总被引:2,自引:0,他引:2  
本文基于粗集理论,针对知识表达系统提出了一种新的归纳学习方法,对该方法中条件属性的简化进行了详细的讨论,并给出了一种具体的属性约简算法,其特点是简单,容易实现,考虑了属性值代表范围的合理性。  相似文献   

16.
在分析和研究C5算法中连续属性处理的必要性及C5算法中离散化方法的不足后,采用基于粗糙集理论-信息熵-可辨识矩阵的离散化的方法(RSIEDM)进行离散化。该方法利用粗糙集、信息熵和可辨识矩阵能更合理、更准确地对连续属性进行离散化,使创建的决策树具有更好的准确率。在优化雷电灾害统计和评估雷电灾害导致的损失应用中,该算法取得了较好的效果。  相似文献   

17.
提出了一种新的室性QRS波分类方法.该方法通过提取反映QRS波形态的特征,获得QRS波形态知识库,运用粗集理论获取最小决策算法,并据此设计神经网络,最后用该网络对室性QRS波进行分类.该方法经MIT心电数据测试表明,室性QRS波正确分类率达99.8%.  相似文献   

18.
本文提出一种将粗集方法与SVM算法结合起来的模式分类方法.利用粗集理论在处理大数据量、消除冗余信息等方面优势,减少SVM训练数据,克服SVM算法因为数据量太大,处理速度慢等缺点;同时,借助SVM良好的分类性能,对粗集约简后的最小属性子集进行分类,实现模式分类算法的快速性能、高识别率和抗干扰性强等优点.本文以手写体汉字的识别为例,说明本算法的实用性.  相似文献   

19.
一种基于Rough集理论的数据过滤方法   总被引:10,自引:1,他引:10  
Routh集理论是一种处理不确定模糊知识的重要工具,在对Rough集理论进行深入研究的基础上,提出了一种基于Rough集理论的这滤算法。该处 工硒思想是基于P-确定的等价类的合并,算法直观,计算简便,理论和实验表明,该算法能够减低信息系统中信息的粒度,在保持规则近似质量不变的前提下,有效地提高规则的统计意义和预测强度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号