共查询到19条相似文献,搜索用时 62 毫秒
1.
2.
随着电子商务的发展,识别网络中的虚假评论意义重大。传统的启发式策略或全监督学习算法不能有效地解决该问题。虚假评论与真实评论在语言结构和情感极性上存在差异,提出基于遗传算法对语言结构及情感极性特征进行优化选择,并利用选取的特征结合无监督硬、软聚类算法对虚假评论进行识别。实验结果验证了所提算法的有效性。 相似文献
3.
4.
为找到垃圾评论的制造者,提出一种基于用户行为的产品垃圾评论者检测方法。从垃圾评论者的行为目的出发,将其发表垃圾评论的5种行为模式作为垃圾评论者的检测指标,从卓越亚马逊网站获取1 470个评论用户,按单指标选取、5个指标集成选取的方法确定最可能和最不可能成为垃圾评论者的评论用户各25个,并对这50个评论者进行人工标记,根据标记结果设计有监督的线性回归模型。实验结果表明,该模型从1 470个评论者中发现88个用户为垃圾评论者,对垃圾评论者的检测效果优于基于用户有用性投票的基准方法。 相似文献
5.
刘芬 《电脑编程技巧与维护》2015,(3):57-59
随着互联网的出现,全球范围内电子商务正在迅速普及与发展,在这样的环境下,电子商务数据挖掘技术应运而生.电子商务数据挖掘技术是近几年来数据挖掘领域中的研究热点,基于用户特征的电子商务数据挖掘技术研究将会解决大量现实问题,为企业确定目标市场、完善决策、获得最大竞争优势,其应用前景广阔,促使电子商务企业更具有竞争力.主要分析了电子商务内容、数据挖掘技术和过程、用户细分理论,以及基于用户特征的电子商务数据挖掘. 相似文献
6.
语音情感识别是语音处理领域中一个具有挑战性和广泛应用前景的研究课题。探索了语音情感识别中的关键问题之一:生成情感识别的有效的特征表示。从4个角度生成了语音信号中的情感特征表示:(1)低层次的声学特征,包括能量、基频、声音质量、频谱等相关的特征,以及基于这些低层次特征的统计特征;(2)倒谱声学特征根据情感相关的高斯混合模型进行距离转化而得出的特征;(3)声学特征依据声学词典进行转化而得出的特征;(4)声学特征转化为高斯超向量的特征。通过实验比较了各类特征在情感识别上的独立性能,并且尝试了将不同的特征进行融合,最后比较了不同的声学特征在几个不同语言的情感数据集上的效果(包括IEMOCAP英语情感语料库、CASIA汉语情感语料库和Berlin德语情感语料库)。在IEMOCAP数据集上,系统的正确识别率达到了71.9%,超越了之前在此数据集上报告的最好结果。 相似文献
7.
数据挖掘技术是近年来计算机领域的重要方向.文中的研究目的就是通过深入分析各种语音情感特征,找出某种特征对语音情感识别的贡献程度,并在数据挖掘技术中寻找适合的模型将有效特征加以利用. 分析和研究了多位科学家在进行语音情感分析过程中采用的方法和技术,通过总结和创新建立了语音情感语料库,并成功地提取了相关的语音信号的特征.后研究了基音频率、振幅能量和共振峰等目前常用的情感特征在语音情感识别中的作用,把数据挖掘中常用的决策树分类方法和语音信号的多个特征相结合,建立了语音情感识别模型,对语音情感数据进行了大量的实验,取得了较为满意的识别结果. 相似文献
8.
9.
微博作为时下热门的社交网络平台,针对其所产生的评论文本进行情感分析已经成为人工智能领域的一个研究热点。考虑到虚假评论会降低情感分析的准确度,从评论用户的状态和行为出发,提出一种基于用户状态与行为的可信度评价体系,用于提取虚假评论特征。结合该特征与PU(Positive and unlabeled)学习算法进行虚假评论识别;运用SVM分类器和随机梯度下降回归模型对去除虚假评论的文本进行主观句分类与情感分析。实验表明,进行虚假评论识别后的情感分析准确率、召回率分别达到0.88和0.89,比传统方法具有更高的分析效能。 相似文献
10.
11.
微博情感分析是对微博文本情感极性的判断并实现微博消息分类,可以对网络舆情进行及时有效的决策。做好微博情感分析的关键点是在原有的基础上更加准确地分析出每条微博文本的情感极性,因此以此为目标对微博进行情感分析。对情感词典进行改进与扩充,主要包括构造程度副词、否定词词典、微博领域词典等相关词典。同时将文本之间的语义规则集考虑到情感分析中,主要涵盖了句间分析规则和句型分析规则。多部情感词典和规则集相结合的方式实现了对微博的情感分析。实验结果证明了该方法对微博情感分析有一定的作用。 相似文献
12.
《计算机应用与软件》2016,(9)
为了提高文本情感分类准确率,提出基于多约简Fisher向量空间模型和支持向量机的文本情感分类算法。该算法首先采用Fisher判别准则提取TF-IDF特征向量,然后依据低维文档向量空间模型间的相似度对文档进行聚类,减少文档的数目。该算法从维度和数量两个方面对文档的向量空间模型进行约简,以期提高支持向量机的训练速度和分类性能。仿真实验结果表明,该算法具有良好的召回率和分类准确率。 相似文献
13.
《计算机应用与软件》2016,(8)
为了能够快速有效地将中文商品评论识别为好评或差评,提出一种算法。针对不同类别的商品,预先根据其评论语料构建领域情感词典,评论文本与情感词典集匹配提取情感特征,构建情感特征向量空间模型SF-VSM(Sentiment Feature Vector Space Model),解决传统的特征向量空间模型维数较高及特征选择误差问题。然后基于该模型结合改进的多项式朴素贝叶斯方法对评论进行情感倾向分类。实验结果表明,相比分别基于原始特征和基于χ2特征选取的朴素贝叶斯分类算法,该算法分类精度较高且分类速度快。 相似文献
14.
传统微博情感分类方法往往忽略对大量表情符号和图片型表情的情感分析.在图片去重算法的基础上,利用表情词和表情符号的相关性构建表情图片情感词典,并加入对官方扩展表情包和图片型表情的情感识别与验证.由于单纯词典方法的性能有限,将词典抽取的规则情感特征与机器学习的基本特征模板融合,使用朴素贝叶斯等分类器,提高情感分类的性能表现... 相似文献
15.
基于词典与机器学习的中文微博情感分析研究 总被引:1,自引:0,他引:1
《计算机应用与软件》2014,(7)
随着Web2.0时代的兴起,与微博相关的研究得到学术界和工业界的广泛关注。选取微博文本中的动词和形容词作为特征;提出基于层次结构的特征降维方法;采用设计的基于表情符号的方法计算特征极性值;在此基础上,提出基于特征极性值的位置权重计算方法,借助SVM作为机器学习模型将微博文本分为正面、负面和中性三类。实验结果表明,提出的方法能够比较有效地对中文微博文本进行情感分类。 相似文献
16.
针对Word2vec等静态词向量模型对于每个词只有唯一的词向量表示,无法学习在不同上下文中的词汇多义性问题,提出一种基于动态词向量和注意力机制的文本情感分类方法.在大型语料库上利用深度双向语言模型预训练通用词向量;在情感分类任务的训练语料上对向量模型进行微调,得到最终的上下文相关的动态词向量作为输入特征;搭建双向长短期... 相似文献
17.
为了从数据集更有效地检测出虚假评论群组.提出一种基于谱聚类的检测算法.对数据集中的多维数据样本进行分析,确定衡量用户之间相似程度的指标;利用用户相似度指标构造一幅以用户为节点、用户之间相似度为边上权值的带权评论者图;将该图的邻接矩阵作为相似度矩阵,利用谱聚类算法对其进行群组检测,将所有用户分为15个候选群组;对检测出的... 相似文献
18.
针对监督学习方法在文本的跨领域情感分析效果较差的问题,提出基于质心迁移的领域间适应性情感分类方法。该方法利用源领域的标注文本对目标领域的大量未标注文本进行分类,选择一部分可信度高的文本加入到训练集,同时去除源领域中距离目标领域测试集质心较远的文本,通过迭代逐渐缩小两个领域间的质心距离,减小领域间差异。实验结果表明,该方法能提高跨领域倾向性分析的精度。 相似文献
19.
《计算机应用与软件》2015,(11)
在文本的情感倾向性研究中缺乏对多种复杂句式的有效分析,而复杂句式中多种情感共现的特点使得传统的情感分类器对复杂句式的情感分析效率不高,所以提出一种新的可以对复杂句式进行有效情感分析的情感分类模型。该模型充分分析了汉语中复杂句式的结构特点,通过已有资源构建中文情感词典、关联词表、否定词表,并提出了一种复杂句式模型来匹配各种复杂句式。最后将该复杂句模与朴素贝叶斯分类器相结合,得到新的针对复杂句式的情感分类模型。在实验中,新的情感分类模型在准确率、召回率、F值上都比传统的情感分类器有了明显的提高。实验证明该模型能更好的分析各种复杂句式的情感。 相似文献