首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
论述了频繁项集数据挖掘算法,并采用自底向上和自顶向下遍历搜索分类方法,对已有的频繁项集挖掘算法进行了分析和比较。  相似文献   

2.
频繁项集挖掘算法综述   总被引:4,自引:0,他引:4  
该文基于频繁项集挖掘算法的研究现状,采用自底向上遍历搜索、自顶向下遍历搜索和混合遍历搜索的分类方法,对现有的频繁项集挖掘算法进行归纳分类,分析和比较了各类别中具有代表性的挖掘算法,总结每种算法各方面的特性.同时,对一些特殊的频繁项集挖掘算法也作了简单介绍.旨在使读者全面掌握频繁项集挖掘算法目前的研究水平,便于研究者对已有的算法进行改进,提出具有更好性能的新的分类算法,也便于使用者在应用时对算法的选择和使用.  相似文献   

3.
传统的频繁项集挖掘方法具有一定的局限性。Apriori算法需要重复扫描输入数据,导致很高的I/O负载,算法性能不高;Fp-growth算法需要在内存中建立Fp-tree并根据Fp-tree挖掘频繁项集,导致算法受到计算机的内存限制。在大数据时代,由于挖掘数据规模十分巨大,更加凸显这些传统算法的局限性。对此,一方面改进传统的频繁项集挖掘算法,另一方面基于Spark框架实现分布式频繁项集挖掘算法(FIMBS)。实验结果表明,该算法相比基于MapReduce框架的关联规则算法具有显著的优势。  相似文献   

4.
基于频繁项集挖掘算法的改进与研究   总被引:1,自引:1,他引:1  
关联规则挖掘是数据挖掘领域中重要的研究内容,频繁项集挖掘又是关联规则挖掘中的关键问题之一。针对已有的频繁项集挖掘算法存在的问题,通过对Apriori算法的分析,提出了Inter-Apriori频繁项集挖掘算法。该算法使用交集策略减少扫描数据库的次数,从而使算法达到较高的效率。实验结果表明,Inter-Apriori算法是Apriori算法效率的2~4倍。  相似文献   

5.
随着数据量的快速增长、数据存储的分散化程度不断提高,对并行分布式数据挖掘算法的需求越来越迫切.文章提出了一种基于垂直FP树的分布式频繁项集挖掘算法DVFP.DVFP采用一种称为垂直FP树(VFP)的格式来存放数据,并同时采用数据并行和任务并行的策略.文章还提出了一种新的序列化方法来对VFP树进行编码,大大减少了处理节点间的通信开销.实验验证DVFP算法在灵活性和处理时间上与现有的分布式算法相比具有较大优势.  相似文献   

6.
针对大数据中的频繁项集挖掘问题,提出一种基于Spark框架的FP-Growth频繁项集并行挖掘算法。首先,根据垂直布局思想将数据按照事务标识符垂直排列,以此解决扫描整个数据集的缺陷。然后,通过FP-Growth算法构建频繁模式树,并生成频繁1-项集。接着,通过扫描垂直数据集来计算项集的支持度,从而识别出非频繁项,并将其从数据集中删除以降低数据尺寸。最后,通过迭代过程来生成频繁 -项集。在标准数据集上的实验结果表明,该算法能够有效挖掘出频繁项集,在执行时间方面具有很大的优越性。  相似文献   

7.
随着各个行业的需要,频繁项集挖掘算法需要处理大量的、连续不断的、动态的数据,算法的计算量非常大,为了提高算法的性能,可以使用CPU和GPU的架构,用GPU的并行计算提高算法的性能。  相似文献   

8.
为了进一步降低扫描数据库的次数和减轻内存负担,从而更好地提高挖掘频繁项集的效率,一种基于Apriori的优化算法(M-Apriori)被提出. 该方法通过构建频繁状态矩阵来存放项集的频繁状态,构建事务布尔矩阵来存放事务与项集的关系,此算法只需在初始化阶段扫描一次数据库产生初始的频繁状态矩阵和事务布尔矩阵,并在此基础上直接递推产生所有的频繁项集. 实验证明,与Apriori算法相比,M-Apriori算法具有更好的性能与效率.  相似文献   

9.
由于互联网技术急速发展及其用户迅速地增加,很多网络服务公司每天不得不处理TB级甚至更大规模的数据量。在如今的大数据时代,如何挖掘有用的信息正变成一个重要的问题。关于数据挖掘(Data Mining)的算法在很多领域中已经被广泛运用,挖掘频繁项集是数据挖掘中最常见且最主要的应用之一,Apriori则是从一个大的数据集中挖掘出频繁项集的最为典型的算法。然而,当数据集比较大或使用单一主机时,内存将会被快速消耗,计算时间也将急剧增加,使得算法性能较低,基于MapReduce的分布式和并行计算则被提出。文中提出了一种改进的MMRA (Matrix MapReduce Algorithm)算法,它通过将分块数据转换成矩阵来挖掘所有的频繁k项集;然后将提出的算法和目前已经存在的两种算法(one-phase算法、k-phase算法)进行比较。采用Hadoop-MapReduce作为实验平台,并行和分布式计算为处理大数据集提供了一个潜在的解决方案。实验结果表明,改进算法的性能优于其他两种算法。  相似文献   

10.
提出了项集长度受限且生成项集对应事务信息的最大频繁项集挖掘问题,定义为L-MAX频繁项集挖掘,并重点研究了项集长度约束特征和事务集信息的存储与生成策略.首先研究了L-MAX频繁项集的性质,然后扩展FP-tree提出了ExFP-tree结构并给出ExFP-tree生成算法.ExFP-tree利用FP-tree共享前缀路径的性质通过共享子孙节点事务信息策略实现大量事务信息的压缩存储;最后基于FP-MAX算法,提出基于ExFP-tree的L-MAX频繁项集挖掘算法,核心思想是先根据L-MAX频繁项集长度约束性质进行前瞻剪枝再进行最大频繁项集挖掘,并通过回溯策略直接定位生成对应事务集.  相似文献   

11.
现有FP-growth频繁集挖掘算法在处理大数据时存在时空效率不高的问题,且内存的使用随着数据的增加已经无法满足把待挖掘数据压缩存储在单个内存中,为此,提出一种基于MapReduce模型的频繁项集并行挖掘算法。该算法采用一种基于key/value键值对直接扫描value寻找条件模式基的方式,同时通过在原有FP-tree树节点中新增一个带频繁项前缀的域空间来构建一颗新的条件模式树NFP-tree,使得对一项频繁项的条件模式基进行一次建树一次遍历就可以得到相应的频繁项集。对所提出的算法在Hadoop平台进行了验证与分析,实验结果表明该算法效率较传统FP-growth算法平均提高16.6%。  相似文献   

12.
关联规则挖掘是数据挖掘领域的重要研究方向之一。频繁项集的挖掘是关联规则挖掘的第一步,也是最重要的步骤。FP-Growth(Frequent Pattern-Growth)算法因其挖掘效率以及空间复杂度方面的优势被广泛应用于频繁项集挖掘任务中。面对海量数据,FP-Growth算法挖掘效率变得极低甚至失效。在Hadoop大数据平台上实现的基于MapReduce框架的并行FP-Growth算法——PFP算法解决在处理大规模数据时传统算法失效的问题,但是由于其将每次执行之后的中间结果输出到磁盘,降低算法执行效率。为提高并行FP-Growth算法执行效率,提出一种基于Spark的SPFPG算法。该算法运用负载均衡思想对分组策略进行改进,综合考虑分区计算量和FP-Tree规模两个因素,保证每个组之间负载总和近似相等。在Spark上实现FP-Growth算法——SFPG算法的基础上,实现优化后的SPFPG算法。实验结果表明,SPFPG算法相比SFPG算法挖掘效率更高,且算法具有良好的扩展性。  相似文献   

13.
提出了一种基于频繁模式矩阵FP-array的挖掘最大频繁项目集的算法.算法基本思想:①只扫描事务数据库一遍,把该数据库转换成一个矩阵FP-array,并且保留了所有事务数据库中项目间的关联信息,然后对该矩阵进行挖掘.②在FP-array中只存放逻辑型数据,节省了存储空间.③直接在FP-array上挖掘而不需要递归创建大量条件模式矩阵,挖掘过程采用逻辑运算,在效率上有独特的优势.通过实验验证了算法的有效性.  相似文献   

14.
为了提高频繁项集挖掘算法的准确性,在不确定性数据流频繁项集挖掘算法SRUF-mine的基础上引入最大可能误差,提出一种基于滑动窗口的false-positive挖掘算法UFIM。UFIM算法对数据流进行分块处理,在内存中维护一个存储滑动窗口内频繁项集的概要数据结构,随着窗口的滑动对该概要结构进行增量更新。实验表明,与SRUF-mine相比,UFIM算法能获得较高的频繁项集挖掘的准确性。  相似文献   

15.
发现频繁项集是关联规则挖掘中最基本、最重要的问题.目前已有两类频繁项集挖掘算法,然而由于其内在的复杂性,这一问题并未完全解决.提出了一种基于FP-Tree的频繁项集挖掘算法,该算法通过计算FP-Tree中非叶子节点的频繁子孙集和频繁前缀,组合生成频繁项集,无需递归构造每个频繁项的条件模式树,节约了时间和内存空间,算法性能在一定程度上得到了提高.  相似文献   

16.
频繁模式增长(FP-growth)算法是挖掘频繁项集的经典算法,解决了挖掘频繁项集时需多次扫描数据库且产生大量候选项集的问题,但大多数基于FP-growth思想的算法在生成频繁项集时存在过程复杂、占用空间多的问题。为此,提出一种基于前序完全构造链表(PF-List)的频繁项集挖掘算法(PFLFIM)。该算法使用PF-List表示项集,通过简单比较和连接两个PF-List挖掘频繁项集,避免复杂的连接操作;使用包含索引、提前停止交集和父子等价策略对搜索空间进行优化,减少空间占用。通过实验验证,相比于FIN算法和negFIN算法,该算法在运行时间和内存占用方面具有更好的性能。将该算法应用于高校人力资源管理系统中进行关联规则挖掘,寻找影响人才发展的因素,为高校人才引进和选拔提供决策支持。  相似文献   

17.
基于二分搜索的最大频繁项目集求解算法改进   总被引:1,自引:0,他引:1  
针对Apriori算法的两个性能瓶颈以及New_Apriori算法中不可忽略的问题,提出新的算法TBapriori。该算法通过二分搜索方法改变由低维到高维或者从高维到低维的搜索策略,直接从1-频繁项目集查找最大频繁项目集,减少了扫描数据库的次数及生成候选集的数量,从而减少发现最大频繁项目集的时间,实验结果表明该算法提高了运算效率。  相似文献   

18.
在XML频繁查询模式挖掘稠密数据集、长数据集中,为克服项目集挖掘过程中挖掘的项目过多、不利于结果利用等问题,提出基于频繁叶模式的最大频繁查询模式挖掘算法MFRSTMiner。该算法通过构造频繁模式扩展森林,在扩展森林的叶节点中挖掘出最大频繁子树。试验结果表明该算法能够有效地挖掘动态事务集的最大频繁查询模式。  相似文献   

19.
随着数据量的增长,如何快速有效发现频繁项集已成为挖掘关联规则的核心问题,而并行计算和闭频繁项集分别是一种处理大量数据直接有效的方法和频繁项集的无失真信息最小集合。分析一些经典闭频繁项集算法和并行关联规则算法及其不足,提出一种基于多核微机的并行闭频繁项集挖掘算法,提高了闭频繁项集挖掘的效率。  相似文献   

20.
数据流的流动性与连续性,使得数据流所蕴含的知识会随着时间的推移而发生变化。挖掘数据流中的频繁项集是一项意义重大且具有挑战性的工作。提出一种基于滑动窗口数据流的频繁项集挖掘——FIUT-Stream算法,FIUT-Stream算法分块挖掘数据流,在内存中维持一个滑动窗口数据的概要结构,随着窗口滑动动态更新该存储结构,利用FIUT算法进行频繁项集挖掘。实验表明,该算法能节省内存空间、精确获得频繁项集。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号