首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Erythropoietin (EPO) is a factor essential for erythroid cell proliferation, differentiation, and survival. The production of EPO by the kidneys in response to hypoxia and anemia is well documented. To determine whether EPO is also produced by hematopoietic cells, we analyzed the expression of EPO in normal human hematopoietic progenitors and in their progeny. Undifferentiated CD34(+)lin- hematopoietic progenitors do not have detectable EPO mRNA. Differentiating CD34(+) cells that are stimulated with recombinant human EPO in serum-free liquid cultures express both EPO and EPO receptor (EPOR). Because CD34(+) cells represent a heterogeneous cell population, we analyzed individual burst-forming units-erythroid (BFU-E) and nonerythroid colony-forming unit-granulocyte-macrophage colonies for EPO mRNA. Only BFU-E colonies were positive for EPO mRNA. Lysates from pooled BFU-E colonies stained positively for EPO by immunoblotting. To further confirm the intrinsic nature of erythroid EPO, we replaced extrinsic EPO in erythroid colony cultures with EPO-mimicking peptide (EMP). We show EPO expression in the EMP-stimulated BFU-Es at both mRNA and protein levels. Stimulation of bone marrow mononuclear cells (BMMCs) with EMP upregulated EPO expression. Furthermore, we found EPO and EPOR mRNAs as well as EPO protein in K562 cells, a human erythroleukemia cell line. Stimulation of K562 cells with EMP upregulated EPO expression. We suggest that EPO of erythroid origin may have a role in the regulation of erythropoiesis.  相似文献   

2.
We previously reported the aberrant growth of granulocyte-macrophage (GM) progenitors induced by a combination of stem cell factor (SCF) and granulocyte-macrophage colony-stimulating factor (GM-CSF) in juvenile chronic myelogenous leukemia (JCML). We examined here the effects of thrombopoietin (TPO) on the proliferation and differentiation of hematopoietic progenitors in JCML. In serum-deprived single-cell cultures of normal bone marrow (BM) CD34+CD38high cells, the addition of TPO to the culture containing SCF + GM-CSF resulted in an increase in the number and size of GM colonies. In the JCML cultures, in contrast, the number of SCF + GM-CSF-dependent GM colonies was not increased by the addition of TPO. However, the TPO addition caused an enlargement of GM colonies in cultures from the JCML patients to a significantly greater extent compared with the normal controls. There was no difference in the type of the constituent cells of GM colonies with or without TPO grown by JCML BM cells. A flow cytometric analysis showed that the c-Mpl expression was found on CD13+ myeloid cells generated by CD34+CD38high BM cells from JCML patients, but was at an undetectable level in normal controls. The addition of TPO to the culture containing SCF or SCF + GM-CSF caused a significant increase in the production of GM colony-forming cells by JCML CD34+CD38neg/low population, indicating the stimulatory effects of TPO on JCML primitive hematopoietic progenitors. Normal BM cells yielded a significant number of megakaryocytes as well as myeloid cells in response to a combination of SCF, GM-CSF, and/or TPO. In contrast, megakaryocytic cells were barely produced by the JCML progenitors. Our results may provide a fundamental insight that the administration of TPO enhances the aberrant growth of GM progenitors rather than the recovery of megakaryocytopoiesis.  相似文献   

3.
It is now accepted from studies in animal models that hematopoietic stem cells emerge in the para-aortic mesoderm-derived aorta-gonad-mesonephros region of the vertebrate embryo. We have previously identified the equivalent primitive hematogenous territory in the 4- to 6-week human embryo, under the form of CD34(+)CD45(+)Lin- high proliferative potential hematopoietic cells clustered on the ventral endothelium of the aorta. To characterize molecules involved in initial stem cell emergence, we first investigated the expression in that territory of known early hematopoietic regulators. We herein show that aorta-associated CD34(+) cells coexpress the tal-1/SCL, c-myb, GATA-2, GATA-3, c-kit, and flk-1/KDR genes, as do embryonic and fetal hematopoietic progenitors later present in the liver and bone marrow. Next, CD34(+)CD45(+) aorta-associated cells were sorted by flow cytometry from a 5-week embryo and a cDNA library was constructed therefrom. Differential screening of that library with total cDNA probes obtained from CD34(+) embryonic liver cells allowed the isolation of a kinase-related sequence previously identified in KG-1 cells. In addition to emerging blood stem cells, KG-1 kinase is also strikingly expressed in all developing endothelial cells in the yolk sac and embryo, which suggests its involvement in the genesis of both hematopoietic and vascular cell lineages in humans.  相似文献   

4.
5.
CD164 is a novel 80- to 90-kD mucin-like molecule expressed by human CD34(+) hematopoietic progenitor cells. Our previous results suggest that this receptor may play a key role in hematopoiesis by facilitating the adhesion of CD34(+) cells to bone marrow stroma and by negatively regulating CD34(+) hematopoietic progenitor cell growth. These functional effects are mediated by at least two spatially distinct epitopes, defined by the monoclonal antibodies (MoAbs), 103B2/9E10 and 105A5. In this report, we show that these MoAbs, together with two other CD164 MoAbs, N6B6 and 67D2, show distinct patterns of reactivity when analyzed on hematopoietic cells from normal human bone marrow, umbilical cord blood, and peripheral blood. Flow cytometric analyses revealed that, on average, 63% to 82% of human bone marrow and 55% to 93% of cord blood CD34(+) cells are CD164(+), with expression of the 105A5 epitope being more variable than that of the other identified epitopes. Extensive multiparameter flow cytometric analyses were performed on cells expressing the 103B2/9E10 functional epitope. These analyses showed that the majority (>90%) of CD34(+) human bone marrow and cord blood cells that were CD38(lo/-) or that coexpressed AC133, CD90(Thy-1), CD117(c-kit), or CD135(FLT-3) were CD164(103B2/9E10)+. This CD164 epitope was generally detected on a significant proportion of CD34(+)CD71(lo/-) or CD34(+)CD33(lo/-) cells. In accord with our previous in vitro progenitor assay data, these phenotypes suggest that the CD164(103B2/9E10) epitope is expressed by a very primitive hematopoietic progenitor cell subset. It is of particular interest to note that the CD34(+)CD164(103B2/9E10)lo/- cells in bone marrow are mainly CD19(+) B-cell precursors, with the CD164(103B2/9E10) epitope subsequently appearing on CD34(lo/-)CD19(+) and CD34(lo/-)CD20(+) B cells in bone marrow, but being virtually absent from B cells in the peripheral blood. Further analyses of the CD34(lo/-)CD164(103B2/9E10)+ subsets indicated that one of the most prominent populations consists of maturing erythroid cells. The expression of the CD164(103B2/9E10) epitope precedes the appearance of the glycophorin C, glycophorin A, and band III erythroid lineage markers but is lost on terminal differentiation of the erythroid cells. Expression of this CD164(103B2/9E10) epitope is also found on developing myelomonocytic cells in bone marrow, being downregulated on mature neutrophils but maintained on monocytes in the peripheral blood. We have extended these studies further by identifying Pl artificial chromosome (PAC) clones containing the CD164 gene and have used these to localize the CD164 gene specifically to human chromosome 6q21.  相似文献   

6.
Myelosuppression is the dose-limiting toxicity for nitrosourea chemotherapy due to low levels of the DNA repair protein O6-alkylguanine-DNA alkyltransferase in myeloid precursors. We have shown that high-efficiency myeloproliferative sarcoma virus (vM5MGMT)-mediated transduction of the human MGMT cDNA into murine bone marrow (BM) cells leads to high MGMT expression and increased progenitor resistance to 1,3-bis-(2-chloroethyl) nitrosourea (BCNU) in vitro immediately after infection and after BM transplantation. These experiments were designed to increase MGMT expression in human hematopoietic progenitors. CD34(+) BM cells were isolated over an immunoaffinity column (CEPRATE, CellPro, Inc.), resulting in a mean 66-fold enrichment in clonogenic progenitors (colony-forming unit granulocyte-macrophage + burst-forming unit erythroid + colony-forming unit granulocyte erythroid macrophage = megakaryocyte), with an average progenitor yield of 58 +/- 11.5% and a final population that was 54% CD34(+). Seventy % of progenitors derived from CD34(+) cells were transduced after coculture with AM12-vM5MGMT retroviral producers. vM5MGMT-transduced progenitors were over 2-fold more resistant to concentrations of BCNU between 30 and 50 micrometer than were concurrently LacZ-transduced progenitors (P < 0.003). In vitro selection of transduced, cytokine-stimulated CD34(+) cells with 20 micrometer BCNU resulted in survival of 4.7% of MGMT+ clonogenic progenitors compared to 0.05% of LacZ+ progenitors. These studies indicate that MGMT-transduced human hematopoietic progenitors have increased resistance to nitrosoureas, and in a clinical transplant setting, this strategy may reduce alkylating agent myelosuppression.  相似文献   

7.
Recombinant adeno-associated virus 2 (AAV) virions were constructed containing a gene for resistance to neomycin (neoR), under the control of either the herpesvirus thymidine kinase (TK) gene promoter (vTK-Neo), or the human parvovirus B19 p6 promoter (vB19-Neo), as well as those containing an upstream erythroid cell-specific enhancer (HS-2) from the locus control region of the human beta-globin gene cluster (vHS2-TK-Neo; vHS2-B19-Neo). These recombinant virions were used to infect either low density or highly enriched populations of CD34+ cells isolated from human umbilical cord blood. In clonogenic assays initiated with cells infected with the different recombinant AAV-Neo virions, equivalent high frequency transduction of the neoR gene into slow-cycling multipotential, erythroid, and granulocyte/macrophage (GM) progenitor cells, including those with high proliferative potential, was obtained without prestimulation with growth factors, indicating that these immature and mature hematopoietic progenitor cells were susceptible to infection by the recombinant AAV virions. Successful transduction did not require and was not enhanced by prestimulation of these cell populations with cytokines. The functional activity of the transduced neo gene was evident by the development of resistance to the drug G418, a neomycin analogue. Individual high and low proliferative colony-forming unit (CFU)-GM, burst-forming unit-erythroid, and CFU-granulocyte erythroid macrophage megakaryocyte colonies from mock-infected, or the recombinant virus-infected cultures were subjected to polymerase chain reaction analysis using a neo-specific synthetic oligonucleotide primer pair. A 276-bp DNA fragment that hybridized with a neo-specific DNA probe on Southern blots was only detected in those colonies cloned from the recombinant virus-infected cells, indicating stable integration of the transduced neo gene. These studies suggest that parvovirus-based vectors may prove to be a useful alternative to the more commonly used retroviral vectors for high efficiency gene transfer into slow or noncycling primitive hematopoietic progenitor cells, without the need for growth factor stimulation, which could potentially lead to differentiation of these cells before transplantation.  相似文献   

8.
Hemoglobinopathies, such as beta-thalassemias and sickle cell anemia (SCA), are among the most common inherited gene defects. Novel models of human erythropoiesis that result in terminally differentiated red blood cells (RBCs) would be able to address the pathophysiological abnormalities in erythrocytes in congenital RBC disorders and to test the potential of reversing these problems by gene therapy. We have developed an in vitro model of production of human RBCs from normal CD34(+) hematopoietic progenitor cells, using recombinant growth factors to promote terminal RBC differentiation. Enucleated RBCs were then isolated to a pure population by flow cytometry in sufficient numbers for physiological studies. Morphologically, the RBCs derived in vitro ranged from early polylobulated forms, resembling normal reticulocytes to smooth biconcave discocytes. The hemoglobin pattern in the in vitro-derived RBCs mimicked the in vivo adult or postnatal pattern of beta-globin production, with negligible gamma-globin synthesis. To test the gene therapy potential using this model, CD34(+) cells were genetically marked with a retroviral vector carrying a cell-surface reporter. Gene transfer into CD34(+) cells followed by erythroid differentiation resulted in expression of the marker gene on the surface of the enucleated RBC progeny. This model of human erythropoiesis will allow studies on pathophysiology of congenital RBC disorders and test effective therapeutic strategies.  相似文献   

9.
Macrophages and dendritic cells derive from a hematopoietic stem cell and the existence of a common committed progenitor has been hypothesized. We have recently found in normal human marrow a subset of CD34(+) cells that constitutively expresses HLA-DR and low levels of CD86, a natural ligand for the T cell costimulation receptor CD28. This CD34(+) subset can elicit responses from allogeneic T cells. In this study, we show that CD34(+)/CD86(+) cells can also present tetanus toxoid antigen to memory CD4(+) T cells. CD86 is expressed at low levels in macrophages and high levels in dendritic cells. Therefore, we have tested the hypothesis that CD34(+)/CD86(+) cells are the common precursors of both macrophages and dendritic cells. CD34(+)/CD86(+) marrow cells cultured in granulocyte-macrophage colony-stimulating factor (GM-CSF)-generated macrophages. In contrast, CD34(+)/CD86(-) cells cultured in GM-CSF generated a predominant population of granulocytes. CD34(+)/CD86(+) cells cultured in GM-CSF plus tumor necrosis factor-alpha (TNF-alpha) generated almost exclusively CD1a+/CD83(+) dendritic cells. In contrast, CD34(+)/CD86(-) cells cultured in GM-CSF plus TNF-alpha generated a variety of cell types, including a small population of dendritic cells. In addition, CD34(+)/CD86(+) cells cultured in granulocyte colony-stimulating factor failed to generate CD15(+) granulocytes. Therefore, CD34(+)/CD86(+) cells are committed precursors of both macrophages and dendritic cells. The ontogeny of dendritic cells was recapitulated by stimulation of CD34(+)/CD86(-) cells with TNF-alpha that induced expression of CD86. Subsequent costimulation of CD86(+) cells with GM-CSF plus TNF-alpha lead to expression of CD83 and produced terminal dendritic cell differentiation. Thus, expression of CD86 on hematopoietic progenitor cells is regulated by TNF-alpha and denotes differentiation towards the macrophage or dendritic cell lineages.  相似文献   

10.
The effect of human recombinant (hr) thrombopoietin (TPO) on human megakaryocytopoiesis was studied in a serum-free system. hrTPO induced megakaryocyte colony formation by purified CD 34-positive cells and polyploidization of megakaryocytes by purified CD41a-positive cells. hrTPO gave rise to much smaller colonies which appeared at an earlier time compared to the use of human recombinant interleukin-3 (hrIL-3), suggesting that hrTPO predominantly affects the population of megakaryocyte progenitor cells in the late stage. hrIL-3 additively increased the hrTPO-induced megakaryocyte colony formation by CD34-positive cells. The hrTPO-induced megkaryocyte colony formation was also increased by the presence of hrIL-6, hrIL-11, human recombinant erythropoietin (hrEpo) or human recombinant stem cell factor (hrSCF), none of which stimulated megakaryocyte colony growth when added alone. The combined addition of hrTPO, hrIL-3 and hrSCF to CD34-positive cells markedly stimulated megakaryocyte colony formation and produced large numbers of megakaryocytes. hrTPO stimulated the polyploidization of CD34-positive cell-derived megakaryocytes in liquid culture. However, the addition of hrIL-6, hrIL-11 or hrEpo to hrTPO did not further enhance the hrTPO-induced polyploidization. These findings indicate that at the megakaryocyte progenitor cell level, the effect of hrTPO can be promoted by the presence of various hematopoietic growth factors involved in human megakaryocytopoiesis.  相似文献   

11.
Human immunodeficiency virus type 1 (HIV-1)-infected individuals often exhibit multiple hematopoietic abnormalities reaching far beyond loss of CD4(+) lymphocytes. We used the SCID-hu (Thy/Liv) mouse (severe combined immunodeficient mouse transplanted with human fetal thymus and liver tissues), which provides an in vivo system whereby human pluripotent hematopoietic progenitor cells can be maintained and undergo T-lymphoid differentiation and wherein HIV-1 infection causes severe depletion of CD4-bearing human thymocytes. Herein we show that HIV-1 infection rapidly and severely decreases the ex vivo recovery of human progenitor cells capable of differentiation into both erythroid and myeloid lineages. However, the total CD34+ cell population is not depleted. Combination antiretroviral therapy administered well after loss of multilineage progenitor activity reverses this inhibitory effect, establishing a causal role of viral replication. Taken together, our results suggest that pluripotent stem cells are not killed by HIV-1; rather, a later stage important in both myeloid and erythroid differentiation is affected. In addition, a primary virus isolated from a patient exhibiting multiple hematopoietic abnormalities preferentially depleted myeloid and erythroid colony-forming activity rather than CD4-bearing thymocytes in this system. Thus, HIV-1 infection perturbs multiple hematopoietic lineages in vivo, which may explain the many hematopoietic defects found in infected patients.  相似文献   

12.
Hematopoiesis is a balance between proliferation and differentiation that may be modulated by environmental signals. Notch receptors and their ligands are highly conserved during evolution and have been shown to regulate cell fate decisions in multiple developmental systems. To assess whether Notch1 signaling may regulate human hematopoiesis to maintain cells in an immature state, we transduced a vesicular stomatitis virus G-protein (VSV-G) pseudo-typed bicistronic murine stem cell virus (MSCV)-based retroviral vector expressing a constitutively active form of Notch1 (ICN) and green fluorescence protein into the differentiation competent HL-60 cell line and primary cord blood-derived CD34(+) cells. In addition, we observed endogenous Notch1 expression on the surface of both HL-60 cells and primary CD34(+) cells, and therefore exposed cells to Notch ligand Jagged2, expressed on NIH3T3 cells. Both ligand-independent and ligand-dependent activation of Notch resulted in delayed acquisition of differentiation markers by HL-60 cells and cord blood CD34(+) cells. In addition, primary CD34(+) cells retained their ability to form immature colonies, colony-forming unit-mix (CFU-mix), whereas control cells lost this capacity. Activation of Notch1 correlated with a decrease in the fraction of HL-60 cells that were in G0/G1 phase before acquisition of a mature cell phenotype. This enhanced progression through G1 was noted despite preservation of the proliferative rate of the cells and the overall length of the cell cycle. These findings show that Notch1 activation delays human hematopoietic differentiation and suggest a link of Notch differentiation effects with altered cell cycle kinetics.  相似文献   

13.
14.
Hematopoietic stem cells are capable of extensive self-renewal and expansion, particularly during embryonic growth. Although the molecular mechanisms involved with stem cell maintenance remain mysterious, it is now clear that an intraembryonic location, the aorta-gonad-mesonephros (AGM) region, is a site of residence and, potentially, amplification of the definitive hematopoietic stem cells that eventually seed the fetal liver and adult bone marrow. Because several studies suggested that morphologically defined hematopoietic stem/progenitor cells in the AGM region appeared to be attached in clusters to the ventrally located endothelium of the dorsal aorta, we derived cell lines from this intraembryonic site using an anti-CD34 antibody to select endothelial cells. Analysis of two different AGM-derived CD34(+) cell lines revealed that one, DAS 104-8, efficiently induced fetal-liver hematopoietic stem cells to differentiate down erythroid, myeloid, and B-lymphoid pathways, but it did not mediate self-renewal of these pluripotent cells. In contrast, a second cell line, DAS 104-4, was relatively inefficient at the induction of hematopoietic differentiation. Instead, this line provoked the expansion of early hematopoietic progenitor cells of the lin-CD34(+)Sca-1(+)c-Kit+ phenotype and was proficient at maintaining fetal liver-derived hematopoietic stem cells able to competitively repopulate the bone marrow of lethally irradiated mice. These data bolster the hypothesis that the endothelium of the AGM region acts to mediate the support and differentiation of hematopoietic stem cells in vivo.  相似文献   

15.
We have developed an efficient and rapid method to analyze transduction in human hematopoietic cells and to select them. We constructed two retroviral vectors using the recombinant humanized S65T green fluorescent protein (rHGFP) gene. Transduced cells appeared with specific green fluorescence on microscopy or fluorescence-activated cell sorting (FACS) analysis. The rHGFP gene was placed under the control of two different retroviral promotors (LTR) in the LGSN vector and in the SF-GFP vector. Amphotropic retroviruses were tested on NIH/3T3 fibroblasts or human hematopoietic (K562, TF-1) cell lines. Then CD34+ cells isolated from cord blood were infected three times after a 48-h prestimulation with IL-3, IL-6, SCF or with IL-3, IL-6, SCF, GM-CSF, Flt3-L and TPO. After 6 days of expansion, a similar number of total CD34(+)-derived cells, CD34+ cells and CFC was obtained in non-transduced and transduced cells, demonstrating the absence of toxicity of the GFP. A transduction up to 46% in total CD34(+)-derived cells and 21% of CD34+ cells was shown by FACS analysis. These results were confirmed by fluorescence of colonies in methyl-cellulose (up to 36% of CFU-GM and up to 25% of BFU-E). The FACS sorting of GFP cells led to 83-100% of GFP-positive colonies after 2 weeks of methyl-cellulose culture. Moreover, a mean gene transfer efficiency of 8% was also demonstrated in longterm culture initiating cells (LTC-IC). This rapid and efficient method represents a substantial improvement to monitor gene transfer and retroviral expression of various vectors in characterized human hematopoietic cells.  相似文献   

16.
17.
Manipulations to enhance engraftment of donated cells may be advantageous in transplantation of fetal hematopoietic cells (FHC). By assessing the formation of colonies, CD34+ enrichment was evaluated with and without cytokine stimulation (interleukins 3 and 6, stem cell factor, granulocyte-macrophage colony-stimulating factor). Cord blood cells and bone marrow cells served as controls. In FHC, cytokine stimulation and CD34+ enrichment always enhanced the formation of CFU-GM (colony-forming units--granulocytes, macrophages) and CFU-GEMM (colony-forming units-granulocytes, erythroid cells, macrophages, megakaryocytes). However, BFU-E (burst-forming units--erythroid cells) in FHC remained unchanged after cytokine stimulation and CD34+ enrichment. In FHC, the addition of cytokines and the enrichment of CD34+ cells usually contributed equally to enhance CFU-GM and CFU-GEMM colony formation. CD34-negative FHC produced the same number or more BFU-E and half the number of CFU-GM and CFU-GEMM as compared with crude cells. This CD34-negative cell population also responded to cytokine stimulation. Such findings may indicate that purification of CD34+ cells is not meaningful in fetal transplantation.  相似文献   

18.
19.
Stable gene transfer to human pluripotent hematopoietic stem cells (PHSCs) is an attractive strategy for the curative treatment of many genetic hematologic disorders. In clinical trials, the levels of gene transfer to this cell population have generally been low, reflecting deficiencies in both the vector systems and transduction conditions. In this study, we have used a pseudotyped murine retroviral vector to transduce human CD34(+) cells purified from bone marrow (BM) and umbilical cord blood (CB) under optimized conditions. After transduction, 71% to 97% of the hematopoietic cells were found to express a low-affinity nerve growth factor receptor (LNGFR) marker gene. Six weeks after transplantation into immunodeficient NOD/LtSz-scid/scid (NOD/SCID) mice, LNGFR expression was detected in 6% to 57% of CD45(+) cells in eight of nine engrafted animals. Moreover, proviral DNA was detected in 8.3% to 45% of secondary colonies derived from BM cells of engrafted NOD/SCID mice. Our data show consistent transduction of SCID-repopulating cells (SRCs) and suggest that the efficiency of gene transfer to human hematopoietic repopulating cells can be improved using existing retroviral vector systems and carefully optimized transduction conditions.  相似文献   

20.
Cytokines produced by stromal cells induce the proliferation and differentiation of hematopoietic cells in the marrow microenvironment. We hypothesized that cross-talk between hematopoietic cells at different stages of differentiation and stromal cells influences stromal cytokine production and is responsible for maintaining steady-state hematopoiesis and responding to stress situations. We show that coculture of primitive CD34(+) cells in contact with or separated by a transwell membrane from irradiated human bone marrow stromal layers induces a fourfold to fivefold increase in interleukin-6 (IL-6) and granulocyte colony-stimulating factor (G-CSF) levels in the stromal supernatant (SN) during the first week. Levels of both cytokines decreased to baseline after coculture of CD34(+) cells for 3 to 5 weeks. Coculture of more mature CD15(+)/CD14(-) myeloid precursors induced only a transient 1.5- to 2-fold increase in IL-6 and G-CSF at 48 hours. Neither CD34(+) nor CD15(+)/CD14(-) cells produced IL-6, G-CSF, IL-1beta, or tumor necrosis factor alpha. When CD34(+) cells were cultured in methylcellulose medium supplemented with cytokines at concentrations found in stromal SN or supplemented with stromal SN, a fourfold to fivefold increase in colony formation was seen over cultures supplemented with erythropoietin (EPO) only. When cultures were supplemented with the increased concentrations of IL-6 and G-CSF detected in cocultures of stroma and CD34(+) cells or when CD34(+) cells were cocultured in methylcellulose medium in a transwell above a stromal layer, a further increase in the number and size of colonies was seen. The colony-forming unit-granulocyte-macrophage-stimulating activity of stromal SN was neutralized by antibodies against G-CSF or IL-6. These studies indicate that primitive CD34(+) progenitors provide a soluble positive feedback signal to induce cytokine production by stromal cells and that the observed increase in cytokine levels is biologically relevant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号