首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The ambient mass spectrometry technique, desorption electrospray ionization mass spectrometry (DESI-MS), is applied for the rapid identification and spatially resolved relative quantification of chlorophyll degradation products in complex senescent plant tissue matrixes. Polyfunctionalized nonfluorescent chlorophyll catabolites (NCCs), the "final" products of the chlorophyll degradation pathway, are detected directly from leaf tissues within seconds and structurally characterized by tandem mass spectrometry (MS/MS) and reactive-DESI experiments performed in situ. The sensitivity of DESI-MS analysis of these compounds from degreening leaves is enhanced by the introduction of an imprinting technique. Porous polytetrafluoroethylene (PTFE) is used as a substrate for imprinting the leaves, resulting in increased signal intensities compared with those obtained from direct leaf tissue analysis. This imprinting technique is used further to perform two-dimensional (2D) imaging mass spectrometry by DESI, producing well-resolved images of the spatial distribution of NCCs in senescent leaf tissues.  相似文献   

2.
Imaging mass spectrometry (MS) is a powerful technique for mapping the spatial distributions of a wide range of chemical compounds simultaneously from a tissue section. Co-localization of the distribution of individual molecular species, including particular lipids and proteins, and correlation with the morphological features of a single tissue section are highly desirable for comprehensive tissue analysis and disease diagnosis. We now report on the use, in turn, of desorption electrospray ionization (DESI), matrix assisted laser desorption ionization (MALDI), and then optical microscopy to image lipid and protein distributions in a single tissue section. This is possible through the use of histologically compatible DESI solvent systems, which allow for sequential analyses of the same section by DESI then MALDI. Hematoxylin and eosin (H&E) staining was performed on the same section after removal of the MALDI matrix. This workflow allowed chemical information to be unambiguously matched to histological features in mouse brain tissue sections. The lipid sulfatide (24:1), detected at m/z 888.8 by DESI imaging, was colocalized with the protein MBP isoform 8, detected at m/z 14117 by MALDI imaging, in regions corresponding to the corpus callosum substructure of the mouse brain, as confirmed in the H&E images. Correlation of lipid and protein distributions with histopathological features was also achieved for human brain cancer samples. Higher tumor cell density was observed in regions demonstrating higher relative abundances of oleic acid, detected by DESI imaging at m/z 281.4, and the protein calcyclin, detected by MALDI at m/z 10085, for a human glioma sample. Since correlation between molecular signatures and disease state can be achieved, we expect that this methodology will significantly enhance the value of MS imaging in molecular pathology for diagnosis.  相似文献   

3.
We have achieved enhanced lipid imaging to a ~10 μm spatial resolution using negative ion mode matrix assisted laser desorption ionization (MALDI) imaging mass spectrometry, sublimation of 2,5-dihydroxybenzoic acid as the MALDI matrix, and a sample preparation protocol that uses aqueous washes. We report on the effect of treating tissue sections by washing with volatile buffers at different pHs prior to negative ion mode lipid imaging. The results show that washing with ammonium formate, pH 6.4, or ammonium acetate, pH 6.7, significantly increases signal intensity and number of analytes recorded from adult mouse brain tissue sections. Major lipid species measured were glycerophosphoinositols, glycerophosphates, glycerolphosphoglycerols, glycerophosphoethanolamines, glycerophospho-serines, sulfatides, and gangliosides. Ion images from adult mouse brain sections that compare washed and unwashed sections are presented and show up to 5-fold increases in ion intensity for washed tissue. The sample preparation protocol has been found to be applicable across numerous organ types and significantly expands the number of lipid species detectable by imaging mass spectrometry at high spatial resolution.  相似文献   

4.
Past studies have demonstrated that combined fluorescence and diffuse reflectance spectroscopy can successfully discriminate between normal, tumor core, and tumor margin tissues in the brain. To achieve efficient, real-time surgical resection guidance with optical biopsy, probe-based spectroscopy must be extended to spectral imaging to spatially demarcate the tumor margins. We describe the design and characterization of a combined fluorescence and diffuse reflectance imaging system that uses liquid-crystal tunable filter technology. Experiments were conducted to quantitatively determine the linearity, field of view, spatial and spectral resolution, and wavelength sensitivity of the imaging system. Spectral images were acquired from tissue phantoms, mouse brain in vitro, and human cortex in vivo for functional testing of the system. The spectral imaging system produces measured intensities that are linear with sample emission intensity and integration time and possesses a 1 in. (2.54 cm) field of view for a 7 in. (18 cm) object distance. The spectral resolution is linear with wavelength, and the spatial resolution is pixel-limited. The sensitivity spectra for the imaging system provide a guide for the distribution of total image integration time between wavelengths. Functional tests in vitro demonstrate the capability to spectrally discriminate between brain tissues based on exogenous fluorescence contrast or endogenous tissue composition. In vivo imaging captures adequate fluorescence and diffuse reflectance intensities within a clinically viable 2 min imaging time frame and demonstrates the importance of hemostasis to acquired signal strengths and imaging speed.  相似文献   

5.
The microscopic response of alpha particles on an imaging plate was studied experimentally. It is proved that a single alpha event can be discriminated from background signals and be recorded on the imaging plate. The spatial resolution of the dose distribution was found to be 43 +/- 2 microns when alpha particles were injected perpendicularly. The observed output signals are well described by the deposited energy.  相似文献   

6.
Molecular imaging by mass spectrometry (MS) is emerging as a tool to determine the distribution of proteins, lipids, and metabolites in tissues. The existing imaging methods, however, mostly rely on predefined rectangular grids for sampling that ignore the natural cellular organization of the tissue. Here we demonstrate that laser ablation electrospray ionization (LAESI) MS can be utilized for in situ cell-by-cell imaging of plant tissues. The cell-by-cell molecular image of the metabolite cyanidin, the ion responsible for purple pigmentation in onion (Allium cepa) epidermal cells, correlated well with the color of cells in the tissue. Chemical imaging using single-cells as voxels reflects the spatial distribution of biochemical differences within a tissue without the distortion stemming from sampling multiple cells within the laser focal spot. Microsampling by laser ablation also has the benefit of enabling the analysis of very small cell populations for biochemical heterogeneity. For example, with a ~30 μm ablation spot we were able to analyze 3-4 achlorophyllous cells within an oil gland on a sour orange (Citrus aurantium) leaf. To explore cell-to-cell variations within and between tissues, multivariate statistical analysis on LAESI-MS data from epidermal cells of an A. cepa bulb and a C. aurantium leaf and from human buccal epithelial cell populations was performed using the method of orthogonal projections to latent structures discriminant analysis (OPLS-DA). The OPLS-DA analysis of mass spectra, containing over 300 peaks each, provided guidance in identifying a small number of metabolites most responsible for the variance between the cell populations. These metabolites can be viewed as promising candidates for biomarkers that, however, require further verification.  相似文献   

7.
The purpose of the study was to investigate molecular changes associated with glioma tissues using FT-IR microspectroscopic imaging (FT-IRM). A multivariate statistical analysis allowed one to successfully discriminate between normal, tumoral, peri-tumoral, and necrotic tissue structures. Structural changes were mainly related to qualitative and quantitative changes in lipid content, proteins, and nucleic acids that can be used as spectroscopic markers for this pathology. We have developed a spectroscopic model of glioma to quantify these chemical changes. The model constructed includes individual FT-IR spectra of normal and glioma brain constituents such as lipids, DNA, and proteins (measured on delipidized tissue). Modeling of FT-IR spectra yielded fit coefficients reflecting the chemical changes associated with a tumor. Our results demonstrate the ability of FT-IRM to assess the importance and distribution of each individual constituent and its variation in normal brain structures as well as in the different pathological states of glioma. We demonstrated that (i) cholesterol and phosphatidylethanolamine contributions are highest in corpus callosum and anterior commissure but decrease gradually towards the cortex surface as well as in the tumor, (ii) phosphatidylcholine contribution is highest in the cortex and decreases in the tumor, (iii) galactocerebroside is localized only in white, but not in gray matter, and decreases in the vital tumor region while the necrosis area shows a higher concentration of this cerebroside, (iv) DNA and oleic acid increase in the tumor as compared to gray matter. This approach could, in the future, contribute to enhance diagnostic accuracy, improve the grading, prognosis, and play a vital role in therapeutic strategy and monitoring.  相似文献   

8.
Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) combines information-rich chemical detection with spatial localization of analytes. For a given instrumental platform and analyte class, the data acquired can represent a compromise between analyte extraction and spatial information. Here, we introduce an improvement to the spatial resolution achievable with MALDI MSI conducted with standard mass spectrometric systems that also reduces analyte migration during matrix application. Tissue is placed directly on a stretchable membrane that, when stretched, fragments the tissue into micrometer-sized pieces. Scanning electron microscopy analysis shows that this process produces fairly homogeneous distributions of small tissue fragments separated and surrounded by areas of hydrophobic membrane surface. MALDI matrix is then applied by either a robotic microspotter or an artist's airbrush. Rat spinal cord samples imaged with an instrumental resolution of 50-250 μm demonstrate lipid distributions with a 5-fold high spatial resolution (a 25-fold increase in pixel density) after stretching compared to tissues that were not stretched.  相似文献   

9.
In situ attenuated total reflection Fourier transform infrared (ATR-FT-IR) spectroscopic imaging has been used to obtain chemical images of fingerprints under controlled humidity and temperature. The distribution of lipid and amino acid components in the fingerprints from different donors left on the surface of the ZnSe crystal has been studied using an in situ FT-IR spectroscopic imaging approach under a controlled environment and studied as a function of time. Univariate and multivariate analyses were employed to analyze the spectroscopic dataset. Changes in the spectra of lipids with temperature and time have been detected. This information is needed to understand aging of the fingerprints. The ATR-FT-IR spectroscopic imaging offers a new and complementary means for studying the chemistry of fingerprints that are left pristine for further analysis. This study demonstrates the potential for visualizing the chemical changes of fingerprints for forensic applications by spectroscopic imaging.  相似文献   

10.
Matrix sublimation has demonstrated to be a powerful approach for high-resolution matrix-assisted laser desorption ionization (MALDI) imaging of lipids, providing very homogeneous solvent-free deposition. This work presents a comprehensive study aiming to evaluate current and novel matrix candidates for high spatial resolution MALDI imaging mass spectrometry of lipids from tissue section after deposition by sublimation. For this purpose, 12 matrices including 2,5-dihydroxybenzoic acid (DHB), sinapinic acid (SA), α-cyano-4-hydroxycinnamic acid (CHCA), 2,6-dihydroxyacetphenone (DHA), 2',4',6'-trihydroxyacetophenone (THAP), 3-hydroxypicolinic acid (3-HPA), 1,8-bis(dimethylamino)naphthalene (DMAN), 1,8,9-anthracentriol (DIT), 1,5-diaminonapthalene (DAN), p-nitroaniline (NIT), 9-aminoacridine (9-AA), and 2-mercaptobenzothiazole (MBT) were investigated for lipid detection efficiency in both positive and negative ionization modes, matrix interferences, and stability under vacuum. For the most relevant matrices, ion maps of the different lipid species were obtained from tissue sections at high spatial resolution and the detected peaks were characterized by matrix-assisted laser desorption ionization time-of-flight/time-of-flight (MALDI-TOF/TOF) mass spectrometry. First proposed for imaging mass spectrometry (IMS) after sublimation, DAN has demonstrated to be of high efficiency providing rich lipid signatures in both positive and negative polarities with high vacuum stability and sub-20 μm resolution capacity. Ion images from adult mouse brain were generated with a 10 μm scanning resolution. Furthermore, ion images from adult mouse brain and whole-body fish tissue sections were also acquired in both polarity modes from the same tissue section at 100 μm spatial resolution. Sublimation of DAN represents an interesting approach to improve information with respect to currently employed matrices providing a deeper analysis of the lipidome by IMS.  相似文献   

11.
MALDI imaging allows the creation of a "molecular image" of a tissue slice. This image is reconstructed from the ion abundances in spectra obtained while rastering the laser over the tissue. These images can then be correlated with tissue histology to detect potential biomarkers of, for example, aberrant cell types. MALDI, however, is known to have problems with ion suppression, making it difficult to correlate measured ion abundance with concentration. It would be advantageous to have a method which could provide more accurate protein concentration measurements, particularly for screening applications or for precise comparisons between samples. In this paper, we report the development of a novel MALDI imaging method for the localization and accurate quantitation of proteins in tissues. This method involves optimization of in situ tryptic digestion, followed by reproducible and uniform deposition of an isotopically labeled standard peptide from a target protein onto the tissue, using an aerosol-generating device. Data is acquired by MALDI multiple reaction monitoring (MRM) mass spectrometry (MS), and accurate peptide quantitation is determined from the ratio of MRM transitions for the endogenous unlabeled proteolytic peptides to the corresponding transitions from the applied isotopically labeled standard peptides. In a parallel experiment, the quantity of the labeled peptide applied to the tissue was determined using a standard curve generated from MALDI time-of-flight (TOF) MS data. This external calibration curve was then used to determine the quantity of endogenous peptide in a given area. All standard curves generate by this method had coefficients of determination greater than 0.97. These proof-of-concept experiments using MALDI MRM-based imaging show the feasibility for the precise and accurate quantitation of tissue protein concentrations over 2 orders of magnitude, while maintaining the spatial localization information for the proteins.  相似文献   

12.
A new method for identification and localization of organic molecules in biological samples is described. The method involves making an imprint of a biological sample on a silver (Ag) surface and subsequent analysis of the imprint by imaging time-of-flight secondary ion mass spectrometry (TOF-SIMS). Using this method, detection of unfragmented, Ag cationized molecules at a spatial resolution of <0.5 microm is possible. We have used the method to study the spatial distribution of phosphatidylcholine and cholesterol in blood cells adhering to a glass surface. The TOF-SIMS images show that cholesterol is preferentially located in the plasma membrane, whereas the phosphocholine shows highest concentration in the nuclear membrane. Scanning electron microscopy and fluorescence microscopy images show that the amount of transferred material during the imprinting process can be controlled by varying the imprinting pressure and pretreatment of the cell substrate prior to imprinting.  相似文献   

13.
Glycoblotting, high throughput method for N-glycan enrichment analysis based on the specific chemical ligation between aminooxy/hydrazide-polymers/solids and reducing N-glycans released from whole serum and cellular glycoproteins, was proved to be feasible for selective enrichment analysis of O-glycans of common (mucin) glycoproteins. We established a standard protocol of glycoblotting-based O-glycomics in combination with nonenzymatic chemical treatment to release reducing O-glycans predominantly from various glycoprotein samples. It was demonstrated that the nonreductive condition employing a simple ammonium salt, ammonium carbamate, made glycoblotting-based enrichment analysis of O-glycans possible without significant loss or unfavorable side reactions. A general workflow of glycoblotting using a hydrazide bead (BlotGlyco H), on-bead chemical manipulations, and subsequent mass spectrometry allowed for rapid O-glycomics of human milk osteopontin (OPN) and urinary MUC1 glycoproteins purified from healthy donors in a quantitative manner. It was revealed that structures of O-glycans in human milk OPN were varied with habitual fucosylation and N-acetyllactosamine units. It was also suggested that purified human urinary MUC1 was modified preferentially by sialylated O-glycans (94% of total) with 7:3 ratio of core 1 to core 2 type O-glycans. Versatility of the present strategy is evident because this method was proved to be suited for the enrichment analysis of general biological and clinical samples such as human serum and urine, cultured human cancer cells, and formalin-fixed paraffin-embedded tissue sections. It is our belief that the present protocols would greatly accelerate discovery of disease-relevant O-glycans as potential biomarkers.  相似文献   

14.
There is a need for intraoperative imaging technologies to guide breast‐conserving surgeries and to reduce the high rates of re‐excision for patients in which residual tumor is found at the surgical margins during postoperative pathology analyses. Feasibility studies have shown that utilizing topically applied surface‐enhanced Raman scattering (SERS) nanoparticles (NPs), in conjunction with the ratiometric imaging of targeted versus untargeted NPs, enables the rapid visualization of multiple cell‐surface biomarkers of cancer that are overexpressed at the surfaces of freshly excised breast tissues. In order to reliably and rapidly perform multiplexed Raman‐encoded molecular imaging of large numbers of biomarkers (with five or more NP flavors), an enhanced staining method has been developed in which tissue surfaces are cyclically dipped into an NP‐staining solution and subjected to high‐frequency mechanical vibration. This dipping and mechanical vibration (DMV) method promotes the convection of the SERS NPs at fresh tissue surfaces, which accelerates their binding to their respective biomarker targets. By utilizing a custom‐developed device for automated DMV staining, this study demonstrates the ability to simultaneously image four cell‐surface biomarkers of cancer at the surfaces of fresh human breast tissues with a mixture of five flavors of SERS NPs (four targeted and one untargeted control) topically applied for 5 min and imaged at a spatial resolution of 0.5 mm and a raster‐scanned imaging rate of >5 cm2 min?1.  相似文献   

15.
This paper demonstrates an approach to obtain chemical images of pharmaceutical tablets using attenuated total reflection infrared (ATR-IR) spectroscopy. FT-IR images with different fields of view and spatial resolution have been obtained using a combination of different ATR accessories. FT-IR imaging with the diamond ATR accessory and micro-ATR imaging technique have been compared. With the diamond ATR imaging accessory, compaction to a tablet can be performed and the chemical image measured in situ. It has been found that the diamond ATR imaging accessory gives information on the overall distribution of different components in a tablet while the micro-ATR imaging technique provides a closer look at the tablet with 4-microm spatial resolution. Low-concentration components down to 0.5% have been detected by the micro-ATR method. Both experimental and commercial systems are studied in this paper.  相似文献   

16.
The van Cittert-Zernike theorem has been widely used to describe spatial covariance of the pressure field backscattered from a speckle object. Spatial covariance contains important information in the context of correlation-based correction of sound velocity inhomogeneities. Previous work was primarily based on spatial covariance analysis for linear imaging. In this paper, we extend the analysis to tissue harmonic imaging. Specifically, we investigate effects of the signal-to-noise ratio (SNR) and sound velocity inhomogeneities on spatial covariance. Results from tissue harmonic imaging are also compared with those from linear imaging. Both simulations and experiments are performed. At high SNRs, although both linear imaging and tissue harmonic imaging have spatial covariance functions close to theory, the spatial covariance of tissue harmonic imaging is consistently lower than that of linear imaging regardless of the presence of sound velocity inhomogeneities. At low SNRs, on the other hand, spatial covariance of tissue harmonic imaging is significantly affected. Because the tissue harmonic signal is much weaker than the linear counterpart, the low SNR reduces the accuracy of correlation-based estimation. It is concluded that the linear signal is more suitable for correlation-based correction of sound velocity inhomogeneities, despite the fact that tissue harmonic imaging generally has improved image quality over linear imaging  相似文献   

17.
Remote optical detection and imaging of specific tumor‐related biomarkers and simultaneous activation of therapy according to the expression level of the biomarkers in tumor site with theranostic probes should be an effective modality for treatment of cancers. Herein, an upconversion nanobeacon (UCNPs‐MB/Dox) is proposed as a new theranostic nanoprobe to ratiometrically detect and visualize the thymidine kinase 1 (TK1) mRNA that can simultaneously trigger the Dox release to activate the chemotherapy accordingly. UCNPs‐MB/Dox is constructed with the conjugation of a TK1 mRNA‐specific molecular beacon (MB) bearing a quencher (BHQ‐1) and an alkene handle modified upconversion nanoparticle (UCNP) through click reaction and subsequently loading with a chemotherapy drug (Dox). With this nanobeacon, quantitative ratiometric upconversion detection of the target with high sensitivity and selectivity as well as the target triggered Dox release in vitro is demonstrated. The sensitive and selective ratiometric detection and imaging of TK1 mRNA under the irradiation of near infrared light (980 nm) and the mRNA‐dependent release of Dox for chemotherapy in the tumor MCF‐7 cells and A549 cells are also shown. This work provides a smart and robust platform for gene‐related tumor theranostics.  相似文献   

18.
Mass spectrometry imaging is of growing interest for chemical mapping of lipids at the surface of tissue sections. Many efforts have been devoted to optimize matrix choice and deposition technique for positive ion mode analyses. The identification of lipid species desorbed from tissue sections in the negative mode can be significantly improved by using 9-aminoacridine together with a robust deposition method, yielding a superior signal-to-noise ratio and thus a better contrast for the ion images in comparison to classical matrices such as α-cyano-4-hydroxycinnamic acid, 2,5-dihydroxybenzoic acid, or 2,4,6-trihydroxyacetophenone. Twenty-eight different lipid species (phosphatidic acids, phosphatidylethanolamines, phosphatidylserines, phosphatidylglycerols, phosphatidylinositols, phosphatidylinositol-phosphates, and sulfatides) were scrutinized on rat brain tissue sections, and systematic MS/MS studies were conducted. It was possible to identify isobaric species differing by their fatty acid chains thanks to the improved sensitivity.  相似文献   

19.
Ambient ionization imaging mass spectrometry is uniquely suited for detailed spatially resolved chemical characterization of biological samples in their native environment. However, the spatial resolution attainable using existing approaches is limited by the ion transfer efficiency from the ionization region into the mass spectrometer. Here, we present a first study of ambient imaging of biological samples using nanospray desorption ionization (nano-DESI). Nano-DESI is a new ambient pressure ionization technique that uses minute amounts of solvent confined between two capillaries comprising the nano-DESI probe and the solid analyte for controlled desorption of molecules present on the substrate followed by ionization through self-aspirating nanospray. We demonstrate highly sensitive spatially resolved analysis of tissue samples without sample preparation. Our first proof-of-principle experiments indicate the potential of nano-DESI for ambient imaging with a spatial resolution of better than 12 μm. The significant improvement of the spatial resolution offered by nano-DESI imaging combined with high detection efficiency will enable new imaging mass spectrometry applications in clinical diagnostics, drug discovery, molecular biology, and biochemistry.  相似文献   

20.
Magnetoacoustic tomography with magnetic induction (MAT-MI) is an imaging technique under development to achieve imaging of electrical impedance contrast in biological tissues with spatial resolution close to ultrasound imaging. However, previously reported MAT-MI experimental results are obtained either from low salinity gel phantoms, or from normal animal tissue samples. In this study, we report the experimental study on the performance of the MAT-MI imaging method for imaging in vitro human liver tumor tissue. The present promising experimental results suggest the feasibility of MAT-MI to image electrical impedance contrast between the cancerous tissue and its surrounding normal tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号