共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
为了研究氧化锌纳米线传感器的气敏性能,通过磁控溅射法和水热合成法制备了贵金属Pd掺杂的氧化锌纳米阵列,对制备所得的样品结构和样貌进行了分析,着重研究了掺杂对氧化锌纳米阵列气体传感器的气敏性能的影响,得到贵金属的掺杂能够提高对气体的响应度,并在一定程度上提高气体的灵敏性能。最后,分析了样品的气体传感机理。研究结果表明:在最佳温度下,金属Pd掺杂能够对原件的气敏性能进行改善。 相似文献
5.
高纯纳米ZnSnO3气敏材料的制备及气敏性能 总被引:7,自引:0,他引:7
用草酸-氨水共沉淀法制备了ZnSnO3粉体,适当烧结后制备了一种对乙醇具有高灵敏度和高选择性的传感器。用X射线衍射仪和电镜对其成分和形貌进行分析。此外,用DSC-TG检测了草酸-氨水共沉淀法制得的前驱体反应过程,并与其它方法如:固-固反应、氨水反应制备出的粉体作了比较。结果发现:草酸-氨水共沉淀法制备的前驱体,在600℃,30h热处理后,可以获得高纯纳米ZnSnO3粉末。由这种粉末经700℃烧结2h制成的传感器对乙醇的灵敏度可达13.329。在有其它气体共存时,这种气敏传感器对乙醇具有良好的选择性。在30d的连续检测下,具有很好的稳定性。 相似文献
6.
7.
用化学氧化聚合法,以苯胺(An)为单体,过硫酸铵(APS)为氧化剂,控制反应温度,在酸性介质(无机酸和有机酸)中合成聚苯胺(PAn)。用傅里叶红外光谱(FTIR)和紫外可见光光谱(UV-Vis)对聚苯胺掺杂前后结构的变化进行了测试,讨论了酸掺杂对聚合产物结构的影响。结果表明电子的离域使聚苯胺主链结构经质子酸掺杂后形成了共轭结构。常温下,通过聚苯胺的气敏性能测试,得知有机酸掺杂的聚苯胺的气敏性能更好,其中用磺基水杨酸掺杂的聚苯胺对1000ppm氨气的灵敏度最高,达到了14.8580,具有实际应用价值。 相似文献
8.
聚苯胺的合成、表征及气敏性能研究 总被引:1,自引:0,他引:1
用化学氧化聚合法,以苯胺(An)为单体,过硫酸铵(APS)为氧化剂,控制反应温度,在酸性介质(无机酸和有机酸)中合成聚苯胺(PAn).用傅里叶红外光谱(FTIR)和紫外可见光光谱(UV-Vis)对聚苯胺掺杂前后结构的变化进行了测试,讨论了酸掺杂对聚合产物结构的影响,结果表明电子的离域使聚苯胺主链结构经质子酸掺杂后形成了共轭结构.常温下,通过聚苯胺的气敏性能测试,得知有机酸掺杂的聚苯胺的气敏性能更好,其中用磺基水杨酸掺杂的聚苯胺对1000 ppm氨气的灵敏度最高,达到了14.8580,具有实际应用价值.最后初步探讨了聚苯胺的气敏机理. 相似文献
9.
10.
采用溶剂热法制备了球状结构的氧化铁前驱体,再经400℃热处理后得到α-Fe_2O_3纳米微球。通过TG、IR、XRD和SEM等手段对产物结构和形貌进行了表征。结果表明,合成的α-Fe_2O_3纳米微球直径约为500 nm。此外,我们将α-Fe_2O_3纳米微球制备成厚膜型气敏元件并进行气敏性能测试,在工作温度为150℃时,α-Fe_2O_3纳米微球对苯胺(AN)有良好的选择性和较高的灵敏度,最低检出限可达到1.9 mg/m3,对38 mg/m3苯胺的响应值为10.4。测试结果表明,α-Fe_2O_3纳米微球可用于制备苯胺气体传感器。 相似文献
11.
12.
ZnSnO_3用传统工艺制备的气敏元件就能表现出良好的敏感特性,是当前研究热点之一。采用沉淀法制备了ZnSnO_3的前驱体,之后再将制得前驱体进行高温焙烧,最后得到我们所需的钙钛矿型复合氧化物。制备是通过锌离子与柠檬酸钠以及四氯化锌反应制得制得六羟基合锡酸锌,控制两组变量形成能对照,这两组变量分别为锌离子的来源以及柠檬酸钠的用用我们通过高温焙烧得到ZnSnO_3制成气敏器件,然后对其进行气敏测试,得到使ZnSnO_3气敏性达到最佳的气体条件。 相似文献
13.
14.
15.
16.
18.
19.
采用化学氧化聚合法制备出了不同聚噻吩(PTh)掺杂量的PTh/WO3纳米复合材料进行制备,利用X射线衍射仪(XRD)、扫描电子显微镜(SEM)对PTh/WO3纳米复合材料的晶体结构和形貌进行了表征;并研究了PTh/WO3纳米复合材料制备的气敏元件对H2S气体气敏性能。结果表明:PTh/WO3纳米复合材料对H2S气体具有较高的灵敏度,用PTh质量分数为50%的复合材料制成的气敏元件在工作温度为60℃时,对500×10-6的H2S灵敏度达到98,且具有较快的响应与恢复时间。 相似文献
20.
采用静电纺丝工艺制备出不同Fe掺杂比例的一维NiO纳米纤维粉体。研究了不同Fe元素掺杂对一维NiO纳米纤维粉体的微观形貌、结构以及丙酮气敏性能的影响,测试结果表明:当Fe元素掺杂浓度较低时,Fe掺杂一维NiO纳米纤维粉体晶体结构未发生变化,均为立方相结构。不同比例Fe元素掺杂NiO粉体均具有良好的一维形貌。与一维NiO纳米纤维纳气敏性能相比,Fe掺杂Ni O纳米纤维粉体的最佳气敏工作温度更低,灵敏度更高,气体选择性相应更好,当Fe元素掺杂量为4%时,一维NiO纳米纤维材料对丙酮气体具有最佳的气敏特性。工作温度为300℃时,纳米纤维对100 ppm丙酮气体灵敏度达到23.2,随着丙酮气体浓度增加,Fe掺杂一维NiO纳米纤维粉体的气敏响应灵敏度呈上升趋势。一维NiO纳米纤维气敏性能的改善可归因于Fe元素掺杂促使NiO粉体的缺陷增多,可以为气敏反应提供更多的反应点,从而提高了其气敏性能。 相似文献