首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 125 毫秒
1.
黄瑞坤  郭德福  王刚  易文  廖钢 《轧钢》2023,(3):85-91
针对某2 250 mm常规热轧带钢产线对于生产效率提升的迫切需求,分析了制约其生产效率的关键环节,并提出了相应的优化方法,取得了良好的改善效果。通过优化辊道L1级控制逻辑,并在交接辊道新增L1级HMD信号实现L2级逻辑跟踪的移动,减少了粗轧咬钢时间间隔;通过细化粗轧各道次压下参数层级和提高穿带速度,实现了粗轧生产效率的提升;进一步,通过开发精轧连续穿带自动控制功能、层流冷却防追尾功能,提高了轧制效率和稳定性,同时优化了精轧动态控制程序,解决了精轧出口温度与卷取温度动态控制失效的问题;最后通过中间坯冷却的设备改造和自动化程序开发,减少了精轧前摆钢。生产实际表明:平均轧制节奏由146 s降低至107 s,生产效率提升了26.71%。  相似文献   

2.
彭文  姬亚锋  李影  张殿华  张力  孙建民 《轧钢》2013,30(5):44-45
针对热连轧窄带钢生产中由于精轧区轧区长度长、传统控制方式导致轧制节奏慢的问题,通过对两级自动化控制系统进行优化,设置双存储区,优化轧制规程发送时序和速度算法,解决了两块钢同时轧制的问题。唐山国丰钢铁有限公司620mm热连轧生产线据此改进后,小时产量由原先的55块提高到了72块,大大缩短了生产周期,提高了产能。  相似文献   

3.
贾宝瑞  栗建辉  田亚强 《轧钢》2015,32(6):70-72
速度制度是热连轧工艺最为重要的工艺制度之一。本文结合唐钢FTSR生产线轧机布置特点,针对开发1.0 mm超薄规格带钢中存在的中间坯温降大、轧制过程稳定性差、终轧温度命中率低、频繁甩尾等问题,自主开发了粗轧高速穿帯、精轧梯度轧制,以及抛钢速度、加速度和时序控制等技术。通过具体分析与优化,1.0 mm超薄规格单轧程产量达到555 t,实现了稳定批量生产。  相似文献   

4.
霍光帆  崔二宝  王蕾  刘丰  周阳  王占东 《轧钢》2019,36(1):71-73
针对首钢股份一热轧厂实际,对粗轧区域温降控制技术进行了研究,从板坯温度均匀性、粗轧纯轧时间、粗轧区域冷却水控制等方面进行控制,有效地控制了粗轧温降,为采用低温轧制技术创造了有利条件。  相似文献   

5.
以经典轧制理论为依据,对5052铝合金板带热粗轧过程的轧制力模型进行研究。详细分析了轧辊的弹性压扁半径、应力状态系数和轧件变形抗力三个因素对轧制力的影响。用MATLAB建立的粗轧过程轧制力数学模型,使轧制力预测误差控制在5%~7%之间,基本可以满足现场实际生产的要求。  相似文献   

6.
李显  杨跃标  叶姜  文宝华  庞锐 《轧钢》2020,37(5):25-29
针对低碳铝镇静钢热轧带钢生产时易出现表层粗晶缺陷的问题,对缺陷形貌及分布情况进行了分析,结合该钢种的CCT曲线及轧线实际生产工艺参数,研究了其表层粗晶的产生原因。结果表明,带钢边部温降导致其处于两相区轧制是造成表层粗晶的关键因素。因此,通过提高终轧温度,加强轧线冷却均匀性控制,对轧辊辊身温度监控,精轧采用升速轧制等措施,可以改善带钢长度方向的温度均匀性、减少带钢边部温降,避免带钢进入两相区轧制,可有效控制带钢表层粗晶缺陷。  相似文献   

7.
《塑性工程学报》2020,(1):153-158
提出以工程法与滑移线场组合求解粗轧过程立轧轧制力的方法。基于立轧的变形特点,绘制出经立轧道次后轧件塑性区的滑移线场,根据立轧中狗骨区滑移线场的几何特点,确定了立轧后塑性区的最大深度。然后应用工程法在轧件塑性区域内建立力平衡微分方程并联解屈服条件得出立轧轧制力的解析解,并对此立轧轧制力模型的物理意义进行分析。使用有限元模拟对立轧变形规律进行总结并与组合解法解得的立轧轧制力模型进行比较,误差较小,验证了此轧制力模型的物理意义。将建立的力学模型预测的轧制力与实测数据比较,误差不超过10%。  相似文献   

8.
基于塑性成形CAE技术,模拟研究了锡热轧过程中的疲劳损伤变化,分析了其粗轧第1道次轧制中疲劳损伤因子的分布。采用有限元分析软件DEFORM-3D对锡箔轧制进行了模拟,通过正交试验得到了最优方案。结果表明,锡粗轧第1道次轧制的疲劳损伤主要累积在轧件边部;压下量和轧制速度是影响疲劳损伤的主要因素;疲劳损伤因子随着压下量和轧制速度的增加而增大。锡箔粗轧第1道次的优化工艺参数:压下量为3.5mm,轧辊温度为60℃,轧件温度为100℃,轧制速度为60m/min。疲劳损伤随着轧制的进行逐渐增大,在进入轧机后0.06s达到最大值,此后不再发生变化。  相似文献   

9.
针对某500热连轧窄带钢生产线Φ650三辊粗轧机组采用双根轧制代替单道次轧制的优化方案,利用ANSYS/LS-DYNA有限元软件对Q235B钢优化前、后的整个粗轧过程进行了数值模拟分析。分析结果表明:优化前后轧件断面温度、等效应力-应变分布规律基本一致;特征点温度与实测值吻合良好,前5道次轧件侧面出现了明显的双鼓形;由于采用共轭孔型轧制,上下轧槽直径不对称,轧件上表面应力、应变比下表面略大;对优化前后的轧制力及轧件尺寸进行了分析对比,校核了优化前后粗轧机的主设备能力。优化结果表明优化后的轧线生产能力提高28.47%。  相似文献   

10.
采用有限元分析软件模拟了高速线材生产中铸坯感应加热过程和粗轧无孔型轧制1~3道次的热连轧过程。计算并分析了感应加热过程温度的变化,分析了轧制过程中轧制力、等效应变和温度的变化。计算结果表明,当铸坯表面温度在950~1 100℃范围内时,表面温度越低,粗轧过程中铸坯断面变形相越均匀,变形更易渗透到铸坯中心位置。  相似文献   

11.
黄治东 《轧钢》2018,35(1):79-81
分析了莱芜钢铁集团银山型钢有限公司板带厂1 500mm宽带线带钢宽度拉窄的特征和原因,针对粗轧区域、精轧区域及卷取区域造成的带钢宽度拉窄现象提出了相应改进措施,成品宽度精度得到显著提高。  相似文献   

12.
李贺 《轧钢》2020,37(3):84-89
介绍了山钢日照 2 050 mm热连轧生产线概况。针对供冷轧QP980高强钢用热轧薄规格原料生产中存在中间坯温降快、轧制过程稳定性差、易甩尾、板形难以控制、轧机振动等问题,对生产过程中各工序进行了工艺优化,提出了轧制计划编排、铸坯尺寸及加热制度优化以及粗轧提速、精轧负荷分配、水系统控制、精轧温度控制、侧导板开口度设定、卷取冷却控制及张力设定等的具体措施,实现了薄规格QP980高强钢的稳定生产。  相似文献   

13.
李贺 《轧钢》2007,37(3):84-89
介绍了山钢日照 2 050 mm热连轧生产线概况。针对供冷轧QP980高强钢用热轧薄规格原料生产中存在中间坯温降快、轧制过程稳定性差、易甩尾、板形难以控制、轧机振动等问题,对生产过程中各工序进行了工艺优化,提出了轧制计划编排、铸坯尺寸及加热制度优化以及粗轧提速、精轧负荷分配、水系统控制、精轧温度控制、侧导板开口度设定、卷取冷却控制及张力设定等的具体措施,实现了薄规格QP980高强钢的稳定生产。  相似文献   

14.
高德红 《轧钢》1999,(4):48-51
结合马钢中板生产实际, 对控轧控冷工艺中快速轧制, 快速冷却, 大压下量开坯, 大压下率终轧及碳当量对温度控制的影响等主要方面进行了探讨, 并得出适当的工艺参数, 从而大大提高了钢板力学性能合格率。  相似文献   

15.
石雷  李静  张丽娜  肖克勇  夏红雨 《轧钢》2022,39(5):113-117
热轧花纹H型钢是一种绿色环保钢材,可以大大降低钢结构加工成本,马钢在其大H型钢生产线上对热轧花纹H型钢进行了开发。介绍了马钢大H型钢生产线的工艺装备及流程,以Q355B牌号244 mm×252 mm×11 mm×11 mm规格花纹H型钢的开发为例,介绍了钢坯加热制度,开坯、万能轧制工艺和孔型设计,以及矫直工艺。该产品的开发在现有大H型钢产线装备条件下,经过孔型和压下规程的合理设计,采用X-H轧制方法,在万能轧机组最后一道次轧制翼缘外侧花纹,花纹符合标准要求、清晰度优良。与国外轧制工艺进行了对比,降低了对设备精确度的要求,轧制方法更加简便,尺寸调整手段更加多样化,为国内热轧型钢产品开发提供了技术支撑。  相似文献   

16.
本文结合GCr15再结晶模型, 根据轧线实际孔型参数、轧线布置与轧制程序, 采用刚塑性有限元法, 利用模拟软件Deform对轴承钢线材GCr15粗轧进行了三维有限元模拟, 分析总结了粗轧过程中轧件温度场、等效应变和应变速率的变化规律, 得出粗轧过程动态、亚动态和静态再结晶的百分数和对应晶粒尺寸, 揭示了轧件在粗轧过程中再结晶规律及奥氏体晶粒细化规律, 并且证实了初始晶粒尺寸对粗轧过程奥氏体晶粒细化的影响规律。  相似文献   

17.
厚规格管线钢板随其厚度的增加, 落锤撕裂性能控制难度急剧增加, 成为管线钢开发的关键技术。本文对厚规格管线钢板生产过程中铸坯厚度、未再结晶区压下率、变形速率及轧制规程优化设计对粗轧阶段的变形渗透及钢板落锤撕裂性能的影响规律进行了分析研究, 并进行了工业化轧制试验。结果表明: 轧制相同规格(22 mm厚)管线钢板时, 铸坯厚度由300 mm增加到400 mm, 钢板落锤剪切面积由85%~90%提高到90%~100%; 采用相同坯料(400 mm厚)轧制25 mm厚度管线钢板, 通过优化轧制规程, 钢板落锤剪切面积由85%~90%提高到90%~95%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号