首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
基于互信息的PCA方法及其在过程监测中的应用   总被引:2,自引:7,他引:2       下载免费PDF全文
童楚东  史旭华 《化工学报》2015,66(10):4101-4106
主元分析(PCA)是一种经典的特征提取方法,已被广泛用于多变量统计过程监测,其算法的本质在于提取过程数据各变量之间的相关性。然而,传统PCA算法中定义的相关性矩阵局限于计算变量间的线性关系,无法衡量两个变量间相互依赖的强弱程度。为此,提出一种新的基于互信息的PCA方法(MIPCA)并将之应用于过程监测。与传统PCA所不同的是,MIPCA通过计算两两变量间的互信息来定义相关性,将原始相关性矩阵取而代之为互信息矩阵,并利用该互信息矩阵的特征向量实现对过程数据的特征提取。在此基础上,可以建立相应的统计监测模型。最后,通过实例验证MIPCA用于过程监测的可行性和有效性。  相似文献   

2.
PCA过程监测方法的故障检测行为分析   总被引:21,自引:4,他引:21       下载免费PDF全文
王海清  宋执环  王慧 《化工学报》2002,53(3):297-301
通过分别导出T2 和SPE统计量均值与过程数据统计参数之间的关系 ,分析了影响主元分析 (PCA)检测行为的因素以及工况变化与故障在PCA下的不同被检测行为 ,利用双效蒸发过程的仿真监测验证了获得的结果 ,指出了通常关于PCA检测行为的一些不准确的结论  相似文献   

3.
赵帅  宋冰  侍洪波 《化工学报》2018,69(3):962-973
质量相关的故障检测已成为近几年研究热点,它的目标是在过程监测中,对质量相关的故障检测率更高,对质量无关的故障少报警或不报警。传统主元分析算法的故障检测会对所有故障均报警,不能达到上述要求。另外,在实际工业生产中,质量变量通常难以实时获得,需要后续分析或延时得到。为此,提出一种融合贝叶斯推断与互信息的加权互信息主元分析算法。首先利用贝叶斯推断的加权方法将度量过程变量和质量变量之间相关关系的互信息进行融合,选出包含质量变量信息量最大的一组过程变量。然后对过程变量利用主元分析(principal component analysis,PCA)进行统计建模,再次根据加权互信息选出包含质量变量信息量最大的主元,建立统计量进行故障检测。最后,通过实验验证该方法的可行性和有效性。  相似文献   

4.
王磊  邓晓刚  徐莹  钟娜 《化工学报》2016,67(10):4300-4308
针对工业过程监控中传统主元分析(PCA)方法没有突出局部变量信息的问题,提出一种基于变量子域PCA(variable sub-region PCA,VSR-PCA)的故障检测方法。首先使用PCA将原始数据空间分解成主元子空间(principal component subspace,PCS)和残差子空间(residual subspace,RS),计算变量与PCS的互信息来度量两者的相关性并以此划分变量子域。然后在变量子域中计算局部T2统计量和局部SPE统计量,并通过贝叶斯推理整合所有子域的信息构造全局统计量,使得在利用所有过程信息的同时挖掘局部变量信息。在连续搅拌反应釜系统上的仿真结果表明,VSR-PCA方法具有更好的过程监控性能。  相似文献   

5.
对现代大型复杂动态过程来讲,不同测量变量会存在不同的序列相关性,而且变量间的相互影响会体现在不同的采样时刻上。为此,结合利用分散式建模的优势,提出一种基于互信息的分散式动态过程故障检测方法。该方法在对每个测量变量都引入多个延时测量值后,利用互信息为每个变量区分出与其相关的测量值,并建立起相应的变量子块。这种变量分块方式使每个变量子块都能充分地获取与之相对应的自相关性与交叉相关性信息,较好地处理了数据的动态性问题。然后,利用主元分析(PCA)算法对每一变量子块进行统计建模从而建立起适于大规模动态过程的多模块化的故障检测模型。最后,通过实例验证该方法用于动态过程监测的可行性和有效性。  相似文献   

6.
为了解决传统主元分析(PCA)故障监测方法中主元选择不合理问题,提出一种基于故障敏感主元的多块PCA故障监测方法。该方法基于正常工况数据集进行PCA分解,得到投影方向与特征值;定义一种故障敏感程度系数作为新的主元排序准则,以选择出每个变量方向上故障监测最敏感的主元;并建立相应的子模型,计算其监测统计量,利用贝叶斯信息准则(BIC)对监测结果进行融合。通过对田纳西伊斯曼(TE)过程和高炉炼铁过程中的应用仿真,结果表明所提方法有效地选取了主元,并且提升了故障监测模型的精度。  相似文献   

7.
针对工业过程的多模态和非高斯特性,提出一种基于改进局部熵主元分析(ILEPCA)的故障检测方法。引入k近邻的均值对局部概率密度函数进行改进,构造改进的局部熵数据剔除多模态和非高斯特性。对改进的局部熵数据建立主元分析(PCA)模型,根据核密度估计计算控制限。对于测试数据,运用改进的局部熵算法预处理后,向PCA模型上投影,计算统计量。通过比较统计量与控制限来进行故障检测。把该方法应用到数值例子和半导体过程故障检测,仿真结果表明,与PCA、核主元分析(KPCA)和局部熵PCA (LEPCA)相比,ILEPCA算法在具有多模态和非高斯特性的工业过程故障检测中具有明显的优越性。  相似文献   

8.
孙栓柱  董顺  江叶峰  周挺  李益国 《化工学报》2018,69(3):1228-1237
统计量模式分析(SPA)最近在故障检测领域取得了广泛应用,其实质是用数据的统计量矩阵来代替原始数据矩阵进行故障检测,然而其统计量的选取存在盲目性且各统计量之间存在复杂的非线性关联关系,难以满足后续应用主成分分析(PCA)完成故障检测所需的基本条件。为了解决这个问题,提出了基于最小充分统计量模式分析的故障检测方法(MSSPA)。该方法首先将原始数据矩阵进行正交变换以消除变量之间的关联性,然后估计出每个变量的概率密度函数或者多个变量的联合概率密度函数,进而求出原始数据的最小充分统计量,并用最小充分统计量来构造统计量矩阵。最小充分统计量的引入还能够有效应对数据的非高斯分布问题。最后,通过在TE过程上的仿真测试验证了该方法用于故障检测的可行性和有效性。  相似文献   

9.
范玉刚  李平  宋执环 《化工学报》2006,57(11):2670-2676
基于主元分析(PCA)的统计检测方法已经被广泛应用于各种化工过程的故障检测和识别.移动主元分析(moving principal component analysis,简称MPCA)算法基于PCA,根据主元子空间的变化来判断故障是否发生.然而,基于主元分析的统计检测方法是线性方法,无法有效应用于非线性系统.因此,提出一种适合于非线性系统的故障检测方法——基于核主角(kernel principal angle,简称KPA)的故障检测方法,其基本思想与MPCA相似,主要内容包括构建特征子空间和核主角测量两部分.TE过程故障检测仿真实验证明,基于核主角的故障检测方法优于传统的多元统计检测方法(cMSPC)和MPCA.  相似文献   

10.
冯立伟  张成  李元  谢彦红 《化工学报》2018,69(7):3159-3166
现代工业产品的生产往往需要多个生产阶段,多阶段生产过程的故障检测成为一个重要问题。多阶段过程数据具有多中心、各工序数据结构不同等特征。针对多阶段过程数据的特征,提出了基于双近邻标准化和主元分析的故障检测方法(DLNS-PCA)。首先寻找样本的双层局部近邻集;其次使用双层局部近邻集的信息标准化样本,得到标准样本;最后在标准样本集上使用主元分析方法进行故障检测。双局部近邻标准化能够将各阶段数据的中心平移到同一点,并且调整各阶段数据的离散程度,使之近似相等,从而将多阶段过程数据融合为服从单一多元高斯分布的数据。进行了青霉素发酵过程故障检测实验,实验结果表明DLNS-PCA方法相对于PCA、KPCA、FDkNN等方法对多阶段过程故障具有更高的检测率。DLNS-PCA方法提高了多阶段过程故障检测能力。  相似文献   

11.
改进PCA及其在过程监测与故障诊断中的应用   总被引:20,自引:4,他引:20       下载免费PDF全文
王海清  宋执环  李平 《化工学报》2001,52(6):471-475
提出一种改进的主元分析 (PCA)方法 ,采用主元相关变量残差 (PVR)统计量代替通常的平方预测误差Q统计量 ,用于工业过程的监测与故障诊断。改进PCA避免了Q统计量的保守性 ,能够提供更详细的过程变化信息 ,从而有效识别正常工况改变与过程故障引起的T2 图变化。通过对双效蒸发过程的仿真监测 ,与普通PCA方法进行了比较 ,表明了改进PCA方法的有效性  相似文献   

12.
13.
蓝艇  童楚东  史旭华 《化工学报》2017,68(8):3177-3182
传统主成分分析(PCA)算法旨在挖掘训练数据各变量间的相关性特征,已在数据驱动的故障检测领域得到了广泛的研究与应用。然而,传统PCA方法在建模过程中通常认为各个测量变量的重要性是一致的,因此不能有效而全面地描述出变量间相关性的差异。为此,提出一种变量加权型PCA(VWPCA)算法并将之应用于故障检测。首先,通过对训练数据进行加权处理,使处理后的数据能够充分体现出变量间相关性的差异。然后,在此基础上建立分布式的PCA故障检测模型。在线实施故障检测时,则通过贝叶斯准则将多组监测结果融合为一组概率指标。VWPCA方法通过相关性大小为各变量赋予不同的权值,从而将相关性差异考虑进了PCA的建模过程中,相应模型对训练数据特征的描述也就更全面。最后,通过在TE过程上的测试验证VWPCA方法用于故障检测的优越性。  相似文献   

14.
基于多块信息提取的PCA故障诊断方法   总被引:1,自引:0,他引:1  
顾炳斌  熊伟丽 《化工学报》2019,70(2):736-749
传统的监控方法往往只利用传感器观测值信息进行过程的故障监测,而忽略了原始数据中包含的其他有效信息。为此,提出一种基于多块信息提取的PCA故障监测算法。首先,对过程变量的累计误差和变化率信息进行定义,从而能够从数据中提取新的特征信息,并基于每种特征将过程划分为3个子块;然后,利用PCA方法对每个子块进行建模与监测,通过贝叶斯方法对监测结果进行融合;最后,提出一种基于加权贡献图的故障诊断方法,分离出引发故障的源变量。通过数值例子与田纳西-伊斯曼(TE)过程监控中的应用证明了所提方法的有效性与可行性。  相似文献   

15.
董顺  李益国  孙栓柱  刘西陲  沈炯 《化工学报》2018,69(8):3528-3536
作为一种经典的方法,主成分分析(PCA)在多元统计过程监控领域得到了广泛的应用。然而,主成分分析及其各种改进方法仅从原始数据中提取了一层特征,缺乏对深层次特征的提取。计算机领域深度学习技术的发展表明了深层次的网络结构有利于数据特征的提取,因此,将主成分分析网络(PCANet)这种深度学习网络结构引入到故障诊断领域,与多元统计过程监控方法进行结合,以增强故障检测效果。在PCANet框架下,针对工业过程数据的动态特征,在网络结构中增加了状态空间模型作为动态层以解决动态性问题。此外,还以故障检测为目标重新设计了输出层。最后,通过在TE过程上的仿真测试验证了该方法用于故障检测的可行性和有效性。  相似文献   

16.
韩宇  李俊芳  高强  田宇  禹国刚 《化工学报》2020,71(3):1254-1263
基于核熵主成分分析方法的统计模型仅利用正常工况下数据进行建模,而忽略了监控系统数据库中一些已知类别的先前故障数据。为了利用先前故障数据中包含的故障信息来增强故障检测性能,提出了一种故障判别增强KECA (fault discriminant enhanced kernel entropy component analysis, FDKECA)算法。该法通过采用无监督学习和监督学习方法建立模型,同时监测非线性核熵主成分(kernel entropy component, KEC)和故障判别成分(fault discriminant component, FDC)两类数据特征。此外,利用贝叶斯推理将相应的监视统计信息转换为故障概率,并通过加权两个子模型的结果来构建基于总体概率的监视统计量。通过数值仿真和田纳西伊斯曼(Tennessee Eastman, TE)过程仿真实验,证明和传统KECA相比,FDKECA算法能够有效利用故障数据提高故障检测率。  相似文献   

17.
Nonlinear dynamic process monitoring based on dynamic kernel principal component analysis (DKPCA) is proposed. The kernel functions used in kernel PCA (KPCA) are profitable for capturing nonlinear property of processes and the time-lagged data extension is suitable for describing dynamic characteristic of processes. DKPCA enables us to monitor an arbitrary process with severe nonlinearity and (or) dynamics. In this respect, it is a generalized concept of multivariate statistical monitoring approaches. A unified monitoring index combined T2 with SPE is also suggested. The proposed monitoring method based on DKPCA is applied to a simulated nonlinear process and a wastewater treatment process. A comparison study of PCA, dynamic PCA, KPCA, and DKPCA is investigated in terms of type I error rate, type II error rate, and detection delay. The monitoring results confirm that the proposed methodology results in the best monitoring performance, i.e., low missing alarms and small detection delay, for all the faults.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号