首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
通过建立CRTS Ⅲ型板式无砟轨道-高架箱梁桥有限元模型,以德国低干扰谱激励下的轮轨垂向力为输入,对CRTS Ⅲ型板式无砟轨道桥梁区段的高架线路动力学响应进行研究。研究结果表明:板壳单元很好地体现高架箱梁桥低频时的整体和局部振动情况,高架箱梁桥自振时顶板变化最为复杂,翼板在20阶以后振动加剧;德国低干扰谱激励下的高架箱梁桥的振动主要集中在200 Hz以下,与其他轨道型式类似;CRTS Ⅲ型板式无砟轨道结构可明显降低高架箱梁桥结构在0-50 Hz频段内的低频振动,是一种具有良好减振作用的轨道结构型式。  相似文献   

2.
将既有的车辆-有砟轨道-路基-层状地基耦合系统垂向振动解析模型进行修改,使模型适应于板式无砟轨道的状况。针对我国客运专线线路情况,利用模型比较分析了有砟与板式无砟两种轨道结构下高速列车运行引起的地基振动,得到地基表面垂向振动加速度的振级、时程曲线和Z振级,动应力的功率谱与时程曲线;并讨论了轨道随机不平顺对地基振动的影响。分析结果表明:板式无砟轨道具有更好的隔振能力,板式无砟轨道情况下的地基振动加速度和动应力都明显小于有砟轨道的情况,其中Z振级减小约10~20 d B,且减小振动的主要频率分布在10~40 Hz的中频范围内;移动轴荷载对地基的低频振动贡献较大,而轨道随机不平顺主要对中高频振动产生作用,且板式无砟轨道情况下轨道随机不平顺对地基振动的影响远大于有砟轨道的情况,因此板式无砟轨道需更严格控制轨道的平顺状态。  相似文献   

3.
随着高架桥梁在轨道交通中的广泛应用,轨道交通引起的桥梁结构振动与噪声问题越来越引起人们的关注。以常见的无砟轨道-箱梁结构为研究对象,考虑常用的扣件、桥梁支座及CA砂浆性能参数,基于轨道和桥梁振动理论建立钢轨-轨道板-CA砂浆层-基座-桥梁系统空间实体振动分析模型,以轨道和桥梁结构的位移导纳为考核指标,分析振动在无砟轨道-箱梁结构中的传递,研究各关键参数对振动衰减的影响。计算结果表明:高速列车运行引起的10 Hz以内的低频振动衰减较慢,10 Hz以上的振动随着频率的增加衰减速度逐渐加快;桥梁腹板10 Hz以内的横向振动幅值约为竖向振动的10%,10 Hz以上两者振动水平相当;桥梁支座对桥梁结构低频振动有一定减振作用,而弹性扣件对中高频的桥梁结构振动有减振作用,CA砂浆层刚度对桥梁结构的振动影响较小;低刚度扣件减小桥梁振动的同时,会加剧较高频率的钢轨振动。计算及分析结果可为高速铁路桥梁结构的减振降噪设计提供参考。  相似文献   

4.
建立带有钢轨吸振器的高速铁路高架结构板式轨道与桥梁垂向耦合振动模型,分析钢轨吸振器对轨道和桥梁结构垂向振动的影响。模型已考虑了钢轨吸振器、板式轨道结构及桥梁间的耦合作用。钢轨吸振器被视为两自由度的质量-弹簧系统,钢轨、轨道板和桥梁被视为多层叠合梁模型,彼此用弹簧阻尼元件联接。利用动柔度函数,得到吸振器-板式轨道-桥梁系统垂向振动响应的解析表达式,并以轮轨表面粗糙度谱作为激励求解模型的振动响应。研究结果表明:钢轨吸振器在180 Hz~300 Hz及700 Hz~1 000 Hz频段内对整个高架轨道系统的位移幅值及相位、振动衰减产生较明显的影响;同时,在轮轨表面粗糙度谱的激励下,带有钢轨吸振器的轮轨系统的轮轨力在pinned-pinned频率处明显减小,在前两阶自振主频附近钢轨吸振器对整个高架轨道系统结构振动的影响较明显。  相似文献   

5.
利用Simpack软件建立高速列车-轨道耦合动力学模型,计算在轨道不平顺谱激励下的轮轨垂向力,以此作为载荷边界条件施加到高架箱梁结构的有限元模型。计算了高架箱梁表面的振动响应,并利用箱梁结构振动响应作为声学边界条件。进而又采用间接边界元法对其进行声辐射分析。研究结果表明,利用板壳单元,采用有限元—边界元方法能够有效计算混凝土简支箱梁结构的振动噪声,主要集中在0~200Hz的低频段,峰值主要出现在中心频率16Hz、25Hz与80 Hz~100Hz;横向声场的声压级随着距离的增加而减小,频率越低越明显;垂向声场的声压级整体上随离地面距离的增加而增大,其中远场区域的声压级在低于31.5Hz的频段内变化不大,在80 Hz~100Hz频段内箱梁结构对其附近及上方区域的结构噪声大于其它区域,尤其是箱梁正上方。  相似文献   

6.
以京沪高铁常用的32 m无砟轨道箱梁结构为原型进行了模型试验,其中模型为轨道-箱梁结构.根据1/10的几何相似比,介绍了试验模型各结构的设计与制作过程,荷载激励由激振器施加.试验结果表明:轨道板振动在500-1024 Hz频段内衰减缓慢,底座板和顶板振动在0-1024 Hz频段内衰减较快;振动由顶板传递至翼缘板的过程中...  相似文献   

7.
为研究CRTS III型板式无砟轨道环境振动特点,对成灌铁路某桥梁段地面振动进行现场测试,分析不同测点地面振动加速度时程特点、频谱特征,并进行1/3倍频程分析和Z振级的衰减分析。结果表明,列车以180 km/h速度通过时,地面振动持续时间约6 s,距线路中心10 m处振动峰值加速度为60 mm/s2;在10 m处振动频谱分布范围在20~90 Hz,高频振动随距离衰减更快,大于20 m处振动主要以15~45 Hz为主;地面振动Z振级的衰减符合对数衰减规律。  相似文献   

8.
自密实混凝土是决定CRTSⅢ型板式无砟轨道结构寿命的关键,该文主要介绍了自密实混凝土在高速铁路CRTSⅢ型板式无砟轨道工艺性试验中的配合比调整优化及质量控制,并通过调整外加剂组份、粘改剂用量及工艺工装等,达到对自密实混凝土配合比优化控制的目的,发挥自密实混凝土的性能优势,为无砟轨道线上施工做准备。  相似文献   

9.
为了探究高架线路上钢弹簧浮置板减振轨道在外激励作用下的振动特性,建立了钢弹簧浮置板减振轨道-箱梁桥三维有限元模型,以美国六级谱激励下的轮轨力作为输入,对钢弹簧浮置板减振轨道的振动特性进行了系统的研究;在此基础上,分析了不同刚度的钢弹簧对在整体轨道结构振动的影响。研究结果表明:浮置板结构的振动特性以纵向上的弯曲振动为主,同时存在不均匀分布的局部振动特性,因此利用三维有限元模型才能很好的研究浮置板结构的整体和局部振动特性。整体轨道结构在中低频段的振动明显,其中钢轨的主振频率集中在200-250Hz以及425-475Hz;浮置板在150Hz以下的低频段振动密集,主振频段与钢轨一致,但在425-475Hz的振动幅值与低频段相近;浮置板在主振频段的弯曲振动不是规则的同幅值正弦形式,其幅值呈逐渐递增或递减分布。钢弹簧刚度对钢轨50Hz以下的振动频率分布有一定的影响;主要影响浮置板结构的整体振动形式,在频率较低时对振动幅值及局部振动形式也有较大的影响。  相似文献   

10.
为了探究高架线路上钢弹簧浮置板减振轨道在外激励作用下的振动特性,建立钢弹簧浮置板减振轨道-箱梁桥三维有限元模型,以美国六级谱激励下的轮轨力作为输入,对钢弹簧浮置板减振轨道的振动特性进行系统的研究;在此基础上,分析不同刚度的钢弹簧对整体轨道结构振动的影响。研究结果表明:浮置板结构的振动特性以纵向上的弯曲振动为主,同时存在不均匀分布的局部振动特性,因此只有利用三维有限元模型才能很好地研究浮置板结构的整体和局部振动特性。整体轨道结构在中低频段的振动明显,其中钢轨的主振频率集中在200 Hz~250 Hz以及425 Hz~475 Hz;浮置板在150 Hz以下的低频段振动密集,主振频段与钢轨一致,但在425 Hz~475 Hz的振动幅值与低频段相近;浮置板在主振频段的弯曲振动不是规则的同幅值正弦形式,其幅值呈逐渐递增或递减分布。钢弹簧刚度对钢轨50 Hz以下的振动频率分布有一定的影响;主要影响浮置板结构的整体振动形式,在频率较低时对振动幅值及局部振动形式也有较大的影响。  相似文献   

11.
为探讨钢弹簧刚度和浮置板密度对高架钢弹簧浮置板轨道减振特性的影响规律,构建车辆-浮置板轨道-桥梁耦合模型,从时频域的角度对其进行分析,为钢弹簧浮置板轨道的设计参数的合理选择与组合优化提供理论依据。研究结果表明:在2 Hz~20 Hz范围内浮置板的振动水平随钢弹簧刚度的减小而增大。在16 Hz~125 Hz频率范围内,轨道中心线、翼缘、腹板、梁底的振动水平随着钢弹簧刚度的减小而减小,最大减幅达到13 dB。钢弹簧刚度的变化对传递函数的影响比较明显,弹簧刚度越小,浮置板到桥梁结构的竖向传递函数值越小。综合考虑,在设计浮置板轨道结构时建议将钢弹簧的刚度控制在6×106N/m~8×106N/m。浮置板密度的增大会在一定程度上减小系统的振动水平,实际设计中要合理设置浮置板密度,建议控制在2 800 kg/m3~3 200 kg/m3。  相似文献   

12.
针对组合式道床系统道床板低频域振动增大的现象,基于被动式阻尼吸振原理设计道床板上阻尼减振器,根据车辆-轨道耦合动力学理论建立有限元模型,对比分析普通道床及安装阻尼减振器前后组合道床系统的振动特性,研究结果表明:由于普通道床轨道结构与地面基础刚性连接,普通道床道床板的振动加速度级要低于组合道床道床板的振动加速度级,但道床板与基础之间没有隔振措施,使得普通道床地基的振动水平明显高于组合道床地基的振动水平;在20 Hz~40 Hz,组合式道床系统安装道床板阻尼减振器可有效降低道床板的振动加速度级;且随着质量比增大,减振效果逐渐增强,当质量比为0.3时,最大插入损失可达15 d B。  相似文献   

13.
为了实现对地铁低频环境振动的控制,提出了一种基于TID(Tuned inerter damper,调谐惯容阻尼器)的浮置板板下隔振器,并以此形成新型浮置板轨道结构。分别探究了TID隔振器浮置板轨道的低频弹性波传播特性、简谐点荷载作用下振动特性以及列车荷载作用下减振效果;结合多目标遗传算法,开展了TID参数优化分析。结果表明:TID的引入使得传统钢弹簧浮置板新增弯曲波带隙,实现了对板内弹性波的调控;浮置板低频共振所致的振动放大问题得到较大改善。TID隔振器浮置板轨道在4 Hz~16 Hz频率范围内的减振效果得以提升,浮置板振动响应也得到减弱。  相似文献   

14.
通过对扣件进行定频变温试验,结合温频等效原理与高阶分数导数FVMP模型建立扣件的温频变动态力学模型,并在车-轨-桥耦合系统中采用新建模型模拟扣件,基于功率流法系统地分析与评价扣件温频变动态力学性能对车轨桥耦合系统振动能量分布与传递的影响.结果 表明:考虑扣件动参数频变会使中高频段内的轨道结构振动能量增大,对低频段的轨道...  相似文献   

15.
对于一种新型组合式道床试验系统的结构,进行了静动态试验,研究组合式道床系统在承受大载荷作用下,钢轨以及道床板结构受力变化规律,并将静态试验数据与理论计算结果相互对比。在负载状态下对该系统进行了动态锤击试验,验证安装谐振浮轨减振扣件及道床隔振垫组合道床系统的总体减振效果。静态力学特性数据表明:谐振浮轨扣件及道床隔振垫组合式系统理论计算与实际实验值基本一致;动态试验结果得到该组合道床系统在实验室等效轴载14 t~16 t条件下20 Hz~200 Hz频率范围,平均减振量可达到25 dB。  相似文献   

16.
为探讨高架桥梁结构噪声的控制措施,以京沪高铁32 m无砟轨道箱梁结构为原型,设计制作1/10的模型试验系统。通过将TD09型高性能阻尼板材分别敷设于箱梁翼缘板、腹板等位置,进行多工况的桥梁结构噪声降噪的模型试验研究。结果表明:高架轨道箱梁结构噪声峰值频段为200~1000 Hz,敷设阻尼板材在峰值频段内具有一定的降噪效果。阻尼板材对桥梁结构降噪效果与阻尼板材的敷设位置有关,其在桥梁结构噪声控制中有一定的应用价值。在峰值频率500 Hz处,翼缘板敷设阻尼板材对翼缘板下侧降噪效果最好,降噪约为1.6 dB(A);腹板敷设阻尼板对底板处的降噪效果最好,降噪可达3.8 dB(A);腹板及翼缘板同时敷设阻尼板材也对底板处的降噪效果最好,降噪可达3 dB(A)。  相似文献   

17.
基于谱元法建立车辆-轨道结构频域振动模型,其中轨道结构模拟为三层铁木辛柯梁,车辆部分考虑为整车模型,运用Lagrange方程实现车辆与轨道结构的耦合,并采用虚拟激励法将轨道不平顺模拟为虚拟荷载,通过求解车辆-轨道整体结构的谱元法方程,得到车辆-轨道结构在频域内的振动响应。结果表明:钢轨、轨道板和底座板的第一、二、四阶振动峰值分别由车体、转向架、车轮自振引起,其他振动峰值由轨道结构系统自振引起;钢轨、轨道板和底座板的振动能量分布在较宽的频率范围;在离开车辆一侧且距离端轮对2.5 m处,1~800 Hz内钢轨振动迅速衰减,当大于800 Hz时,钢轨振动衰减缓慢;在距离端轮对18 m处,25~1 171 Hz内钢轨振动衰减基本稳定;在距离端轮对20.5 m处,小于25 Hz时,钢轨振动随着离开端轮对距离的增加迅速衰减,当大于1 171 Hz时,钢轨振动则衰减较小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号