首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
为了研究双蒸汽蓄热器系统的动态特性,采用集总参数法建立相应的数学模型,进行直接交替和间接交替两种充汽方式的动态仿真。仿真结果表明:直接交替充汽方式充汽时间减少2.6s,压力波动更小;相同充汽方式下,汽包压力波动过热蒸汽压力波动供汽母管压力波动;直接交替充汽方式燃油量节省率为7.45%。通过数据对比分析可得:直接交替充汽方式具有充汽速度快、压力波动小、燃油经济性好的优点。  相似文献   

2.
不同充汽方式下供汽系统动态特性仿真   总被引:1,自引:1,他引:0       下载免费PDF全文
以供汽系统为研究对象,采用集总参数法建立相应的数学模型,进行充汽阀自动控制充汽和旁通阀自动控制充汽两种充汽方式的动态仿真。结果表明:旁通阀自动控制充汽时完成3次充放汽时间为76.3 s,充汽阀自动控制充汽时完成3次充放汽时间为62.9 s,充汽阀自动控制充汽时平均每次充汽时间减少4.5 s;两种充汽方式关键参数在充汽阶段均维持较为稳定,在阀门切换阶段存在较大波动,但压力波动均小于0.2 MPa;相同充汽方式下,汽包压力波动< 过热蒸汽压力波动< 供汽母管压力波动。  相似文献   

3.
以供汽系统为研究对象,采用集总参数法建立相应的数学模型,进行充汽阀自动控制充汽和旁通阀自动控制充汽两种充汽方式的动态仿真。结果表明:旁通阀自动控制充汽时完成3次充放汽时间为76.3s,充汽阀自动控制充汽时完成3次充放汽时间为62.9s,充汽阀自动控制充汽时平均每次充汽时间减少4.5s;两种充汽方式关键参数在充汽阶段均维持较为稳定,在阀门切换阶段存在较大波动,但压力波动均小于0.2 MPa;相同充汽方式下,汽包压力波动过热蒸汽压力波动供汽母管压力波动。  相似文献   

4.
以锅炉-蓄热器系统为研究对象,采用集总参数法建立了相应的数学模型,并通过仿真与实验相结合的方式,对两种不同充放汽条件下的系统动态特性进行了研究分析。结果表明所建模型能够正确地反映出系统的动态特性,可为系统的设计优化与安全运行提供一定的参考。进一步分析可知,连续充放汽过程蓄热器从压力下限充到上限每次需要57s,而间断充放汽过程则需要67s,时间明显变长;同时对于某些需要周期性间断或瞬间大负荷用汽量的场合,在消除供汽锅炉负荷的较大波动、稳定供汽压力、提高锅炉效率等方面,连续充放汽的效果更为显著。  相似文献   

5.
不同充放汽条件下的锅炉-蓄热器系统动态特性   总被引:3,自引:3,他引:0       下载免费PDF全文
以锅炉-蓄热器系统为研究对象,采用集总参数法建立了相应的数学模型,并通过仿真与实验相结合的方式,对两种不同充放汽条件下的系统动态特性进行了研究分析。结果表明所建模型能够正确地反映出系统的动态特性,可为系统的设计优化与安全运行提供一定的参考。进一步分析可知,连续充放汽过程蓄热器从压力下限充到上限每次需要57 s,而间断充放汽过程则需要67 s,时间明显变长;同时对于某些需要周期性间断或瞬间大负荷用汽量的场合,在消除供汽锅炉负荷的较大波动、稳定供汽压力、提高锅炉效率等方面,连续充放汽的效果更为显著。  相似文献   

6.
船用蒸汽蓄热器非平衡热力过程   总被引:6,自引:4,他引:2       下载免费PDF全文
船用蒸汽蓄热器作为舰船上弹射装置的重要组成部分,具有充、放汽时间短,短时间内蒸汽消耗量大等特点,其运行特性直接关系到弹射装置能否安全、稳定运行。建立了船用蒸汽蓄热器实验系统,以过热蒸汽作为充汽汽源,进行不同工况下的充汽、放汽及连续充放汽实验。实验结果表明:蓄热器充汽(放汽)过程中,其压力呈现先急剧上升(下降)后随充汽(放汽)阀门关闭下降(上升),最终趋于稳定的强烈的非平衡热力过程;由非平衡热力过程导致的压降比随单位时间内充入蓄热器能量的提升而加大;蓄热器内温度变化滞后于压力变化,水温变化滞后于汽温变化。蓄热器非平衡热力过程研究可为蒸汽弹射系统的安全运行提供一定的技术支撑。  相似文献   

7.
回汽保护是缓解蒸汽动力舰船紧急减速时汽包压力骤升幅度、提高舰船机动性的有效措施。建立增压锅炉、主汽轮机、调节阀等设备模型,集成了回汽保护系统仿真模型,并应用试验数据对仿真模型进行了校验。对不同回汽保护控制条件下蒸汽动力系统响应规律进行仿真研究,研究结果表明:倒车调节阀开度越大、开阀时间越短,汽包压力骤升幅度越小,回汽保护效果越明显;倒车调节阀开度越大,冷凝器喉部最高温度越高,而开阀时间对于冷凝器喉部最高温度无明显影响。  相似文献   

8.
根据船用蒸汽蓄热器的特点,建立了考虑蒸发(冷凝)相变弛豫时间的船用蒸汽蓄热器连续工作过程数学模型,并利用实验结果验证了模型的准确性,在此基础上利用仿真模型研究了关键参数对于连续充、放汽过程动态特性的影响。船用蒸汽蓄热器的充水系数决定蓄热器的蓄热能力,同时制约着系统的机动性,而充、放汽压力在影响蒸汽能量的储存与转化效率的同时,对于能否优化蓄热器的容积起到关键作用,因此应充分考虑弹射系统对弹射周期、弹射蒸汽压力、弹射所需蒸汽量等参数的要求匹配好两者的关系,使其既能满足弹射效率又能达到舰载机起飞所需的蒸汽参数。  相似文献   

9.
根据船用蒸汽蓄热器的特点,建立了考虑蒸发(冷凝)相变弛豫时间的船用蒸汽蓄热器连续工作过程数学模型,并利用实验结果验证了模型的准确性,在此基础上利用仿真模型研究了关键参数对于连续充、放汽过程动态特性的影响。船用蒸汽蓄热器的充水系数决定蓄热器的蓄热能力,同时制约着系统的机动性,而充、放汽压力在影响蒸汽能量的储存与转化效率的同时,对于能否优化蓄热器的容积起到关键作用,因此应充分考虑弹射系统对弹射周期、弹射蒸汽压力、弹射所需蒸汽量等参数的要求匹配好两者的关系,使其既能满足弹射效率又能达到舰载机起飞所需的蒸汽参数。  相似文献   

10.
针对舰用蒸汽动力系统工况转换中主蒸汽压力调节过程波动幅度大、稳定耗时长等问题,提出一种PID和隐式广义预测控制复合的控制方法。建立包含增压锅炉、主汽轮机、冷凝器等设备的蒸汽动力系统仿真模型,并通过实验数据进行校验;采用PID-GPC隐式控制方式对仿真模型进行升降负荷实验。结果表明:PID-GPC隐式控制方法弥补了GPC隐式算法初次响应慢的缺陷,减小了动态变化过程中主蒸汽压力波动幅度,缩短稳定时间。  相似文献   

11.
传统的蒸汽硫化机具有胶囊和蒸汽室,使用过热蒸汽加热轮胎使之硫化。蒸汽的传热效率低,能量浪费严重。由于蒸汽的放热冷凝,蒸汽室底部的温度低于蒸汽室顶部的温度,这导致轮胎的不均匀硫化。直压硫化则采用电磁加热方式,其产生的温度场均匀,局部区域温度具有可控性。其次直压硫化工艺用大小鼓瓦与轮胎直接接触传热的方式,其传热效率应该比蒸汽硫化工艺高。本文基于ABAQUS软件,编写HETVAL和UVARM子程序模拟实际硫化工艺得到255/30R22轮胎的温度场和硫化程度场,在相同硫化条件下比较两种工艺的硫化效果。结果表明直压硫化工艺的硫化效率大约提高了三分之一。  相似文献   

12.
以油页岩颗粒作为干燥物料,以过热蒸汽和热空气分别作为干燥介质,进行了油页岩干燥实验的研究。当颗粒粒径减小时,油页岩干燥速率越大;过热蒸汽和热空气温度增大时,干燥速率也越大。对比相同条件下过热蒸汽和热空气干燥油页岩的平均干燥速率,发现当干燥介质温度超过逆转点温度时,过热蒸汽条件下的平均干燥速率大于热空气下的数值。实验得出粒径分别为9,7,5 mm的油页岩颗粒逆转点温度值分别是154,179,177℃;逆转点温度值是个变量,随颗粒粒径大小变化而变化。颗粒粒径越大时逆转点温度值越小,粒径较小时逆转点变化不大。采用薄层干燥模型对油页岩的干燥数据进行动力学模拟,可得修正Page模型(Ⅱ)干基水分比w模拟值与实验值的最大绝对偏差是12%,综合比较发现修正Page模型(Ⅱ)能较好地描述油页岩在过热蒸汽条件下的干燥过程。  相似文献   

13.
The cogeneration system in sugar factory uses bagasse with high moisture content as the fuel for the boiler, which results in low boiler efficiency. The system also produces superheated steam, which is extracted from the turbine, and mixed with cooling water to produce saturated steam required by the evaporation system. The potential use superheated steam to reduce bagasse moisture content is ignored in the standard practice of the sugar factory. In this article, an investigation is made into the improvement of the cogeneration system by using superheated steam dryer to reduce the moisture content of bagasse. Mathematical models are developed for the typical system without superheated steam dryer and the improved system with superheated steam dryer. They are then used to compare the performances of both systems. It is found that, under the condition that the required steam flow rate for the evaporation process and the power output are the same, the improved system requires less bagasse consumption, and has larger energy utilization factor. In addition, water that would be lost with flue gases in the typical system is recovered in the improved system.  相似文献   

14.
Conventional drying of the fibers from oil palm empty fruit bunches (EFB) using flue gas from diesel burners frequently causes browning and dust explosion. Replacing the drying medium with superheated steam is expected to improve the quality of EFB fibers as well as improve the safety of the dryer operation. In this study, the effects of steam temperature and steam velocity on the quality of steam–dried EFB fibers was investigated. The drying experiment was carried out at atmospheric pressure with steam superficial velocity in the range of 0.3 to 0.49 m s?1 and temperature in the range of 135 to 200°C. Three quality parameters of the EFB fibers, the color, strength, and microstructure, were used to assess the changes in EFB fiber quality as a result of superheated steam drying. The color of the EFB fiber was either improved or not significantly degraded. The strength of the superheated steam–dried EFB fibers was higher than that of undried and hot air–dried EFB fibers. The microstructure of fresh undried EFB fibers as seen by scanning electron microscopy (SEM) showed the presence of round silica particles of 10–20 µm in diameter all over the EFB fiber strand, which complicates pulping and bleaching. Superheated steam drying successfully removed the silica particles from the EFB fibers at temperatures of at least 200°C and a velocity of steam of at most 0.49 m s?1, which is better than hammering, which can only remove 88% of the silica particles. The high temperature of the superheated steam loosened the silica particles from their craters. The EFB fibers cracked and split at steam velocities at or above 0.49 m s?1 and high superheated steam temperatures at or above 200°C and as a consequence became weaker at these conditions. The removal of silica particles by superheated steam drying makes the EFB fiber amenable to pulping and bleaching. Superheated steam drying is therefore found to improve the overall quality of EFB fibers compared to hot air drying.  相似文献   

15.
《Drying Technology》2013,31(8):2063-2079
A new drying method of combined superheated steam and microwave drying is being proposed. The drying rates of sintered glass beads in combined superheated steam and microwave drying are experimentally and theoretically investigated. Drying experiments have been carried out in a waveguide where a standing wave is formed to uniformly heat a small sample. Concerning drying rate curves in combined superheated steam and microwave drying, a distinct constant rate period has been observed. For the falling rate period, high drying rates have been observed. For both periods, the drying rates in combined superheated steam and microwave drying are higher than those in superheated steam alone. Also, in comparison with the results of combined nitrogen and microwave drying, the normalized drying rates in combined superheated steam and microwave drying are higher than those at less than the critical moisture content in combined nitrogen and microwave drying. Moreover, theoretical drying rates for the falling rate period (predicted by a modified receding evaporation front model) in combined superheated steam and microwave drying, are in good agreement with the observed drying rates. The combined superheated steam and microwave drying method can attain higher drying rates under mild external conditions.  相似文献   

16.
Crude oils obtained by oilseed processing have to be refined before the consumption in order to remove undesirable accompanying substances. The traditional alkali refining is often replaced by physical refining in which the use of chemicals is reduced. The most widely used method is steam refining. The crude oil quality is very important in order to obtain high quality refined oil. Furthermore, the oil should be efficiently degummed to remove phospholipids as well as heavy metals and bleached to remove pigments. The most important step consists of the application of superheated steam under low pressure and at temperatures higher than 220 °C. Both free fatty acids and objectionable volatiles, formed by cleavage of lipid oxidation products, are removed. A disadvantage is the partial loss of tocopherols. Side reactions, particularly isomerization of polyunsaturated fatty acids, should be minimized. The quality of physically refined oil is close to that of alkali refined oils, but losses of neutral oil are lower and the environment is less polluted. Among other methods of physical refining the application of selective membranes is promising.  相似文献   

17.
ABSTRACT

Low-fat snack products are the driving forces for the drying of tortilla chips before frying. Super-heated steam impingement drying of foods has the advantage of improved energy efficiency and product quality. The temperature profile, drying curves, and the physical properties (shrinkage, crispiness, starch gelatinization and microstructure) of tortilla chips dried at different superheated steam temperatures and heat transfer coefficients were measured. Results indicated that the steam temperature had a greater effect on the drying curve than the heat transfer coefficient within the range of study. The microstructure of the samples after steam drying showed that higher steam temperature resulted in more pores and coarser appearance. The modulus of deformation and the shrinkage of tortilla chips correlated with moisture content. A higher steam temperature caused less shrinkage and a higher modulus of deformation. The pasting properties showed that samples dried under a higher steam temperature and a higher heat transfer coefficient gelatinized less during drying and had a higher ability to absorb water. Comparison of the superheated steam drying and air drying revealed that at elevated temperatures the superheated steam provided higher drying rates. Furthermore, there was a less starch gelatinization associated with air drying compared to superheated steam drying.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号