首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 93 毫秒
1.
实验研究了湿空气在泡沫金属内流动析湿过程的换热和压降特性,分析了不同因素的影响规律。研究结果表明:随着入口空气相对湿度的增大,凝结水增多,使泡沫金属的换热量和压降均增大;当入口相对湿度从50%增大到90%时,换热量和压降最大增加了67%和62%;随着入口空气温度的升高,泡沫金属换热量和压降增大;随着冷却水温度的升高,泡沫金属的换热量和压降均下降;随着孔密度的增大,压降增大,但由于受到凝结水影响,总换热量会先减小后略有增大;泡沫金属的迎风高度越大,总换热量和压降越大。  相似文献   

2.
通过实验研究,得到不同孔密度的泡沫金属内湿空气的换热和压降特性,并对泡沫金属换热器综合性能进行了分析。测试样件为泡沫铜,孔密度为5~40 PPI(pores per inch),孔隙率为95%。研究结果表明,由于凝结水的存在,泡沫金属内的湿空气传热系数随着孔密度的增大先增大后减小,孔密度为15 PPI时达到最大值;压降随着孔密度的增大而增大,且大于20 PPI时压降增大更明显。综合考虑传热系数与压降因素,泡沫金属孔密度为15 PPI时综合性能最佳。  相似文献   

3.
以去离子水作为工质,设计并搭建了以泡沫铜为研究对象的单相和两相换热实验系统。对于单相流动换热,当Re数较小时,孔隙率80%、孔密度90PPI的泡沫铜样品换热性能最好;当Re数较大时,孔隙率80%、孔密度45PPI的泡沫铜样品换热性能最好。泡沫铜最大换热系数为空通道的6倍,但同时需付出更大的泵功损耗为代价。对于两相流沸腾换热,低孔隙率样品70%~80%能有效地降低壁面过热度和强化沸腾换热性能。孔隙率对沸腾换热性能起决定性作用,孔隙率越低,沸腾换热系数越大;孔密度对沸腾换热性能起次要作用。90PPI泡沫铜样品,因其成核址密度高和毛细力较大,有助于提升泡沫铜的沸腾换热性能。  相似文献   

4.
内壁填充环状金属泡沫的管内流动凝结换热   总被引:2,自引:2,他引:0       下载免费PDF全文
通过采用在圆管内壁填充环状金属泡沫的方法强化管内对流凝结换热,实验研究了制冷剂R134a在内壁填充环状金属泡沫管内的流动凝结的压降和换热,克服了完全填充金属泡沫管流动阻力大的缺点。用于计算传热系数的管壁温度通过热电偶测量得到。综合分析了质量流速和两相流体干度对流动凝结压降及传热系数的影响。研究结果表明内壁填充环状金属泡沫管压降远大于光管,压降随质量流速和干度的增加而迅速增大且呈非线性。通过壁面温度分布和温度波动对内壁填充环状金属泡沫管内的两相流型进行判别,发现影响该类强化管凝结换热的两种主要流型:分层流和环状流。内壁填充环状金属泡沫管的凝结传热系数大于光管,且随着质量流速和干度的增加传热系数增大,该类强化管流动凝结传热系数是光管的2倍左右。  相似文献   

5.
泡沫金属对圆管内R410A流动沸腾压降特性的影响   总被引:1,自引:1,他引:0       下载免费PDF全文
孙硕  胡海涛  丁国良  朱禹 《化工学报》2012,63(11):3428-3433
对填充泡沫金属的圆管中R410A流动沸腾的两相流压降特性进行了实验研究。实验对象为两根内径13.8 mm,分别填充5 PPI/95%孔隙率和10 PPI/95%孔隙率的泡沫铜的圆管。实验工况涵盖:蒸发压力995 kPa;质流密度30~90 kg·m-2·s-1;热通量5.9~16.5 kW·m-2;入口干度0.175~0.775。实验结果表明:泡沫金属显著增加制冷剂流动沸腾的压降,在入口干度为0.775,质流密度为90 kg·m-2·s-1时,内嵌10 PPI 泡沫金属的圆管中的压降梯度达56 kPa·m-1;泡沫金属PPI越大,压降增加越多,相同工况下内嵌10 PPI泡沫金属圆管中制冷剂流动沸腾的压降是内嵌5 PPI泡沫金属圆管中的压降的1.2倍左右。根据实验数据开发了适用于填充泡沫金属的内径13.8 mm圆管中的流动沸腾的压降关联式,结果表明90%的预测值与实验值的偏差在±15%以内。  相似文献   

6.
综述了纳米流体在多孔介质微通道内强化传热的最新研究进展,简述了金属泡沫和纳米磁流体的基本概念,分别从金属泡沫微通道、纳米磁流体微通道、纳米磁流体耦合金属泡沫微通道及其熵产优化分析4个方面进行了系统的讨论和总结。最后指出,这种集成的新型强化传热技术本质上是一个磁场-流场-温度场多场耦合作用下的强化传热过程,具有广阔的应用前景,但机理的基础性研究工作还刚刚起步。  相似文献   

7.
流体在超轻多孔金属泡沫中的流动和换热特性   总被引:1,自引:5,他引:1       下载免费PDF全文
以去离子水为冷却液,对其在超轻多孔铜泡沫中的流动和换热特性进行了实验研究。在测定和分析流量、压力降和温度等实验参数的基础上,获取了热流密度、金属泡沫孔密度、液体流量等参数对层流流体流过金属泡沫时的压力降、通道壁面温度、对流换热等特性的影响。结果表明金属泡沫会显著强化对流换热,大大降低通道的壁面温度,其对流换热能力会随Reynolds数的增大而逐渐增强,最大Nusselt数可达空矩形通道的13倍,但与空通道相比,金属泡沫通道的压力降显著增大,并随Reynolds数及金属泡沫孔密度的增大而增大。  相似文献   

8.
开孔泡沫金属换热性能的研究进展   总被引:1,自引:0,他引:1  
程聪  张铱鈖 《化工机械》2012,39(2):131-134,149
介绍了开孔泡沫金属的结构特点和换热原理,重点从流动特性和传热特性两方面总结了国内外对开孔泡沫金属换热性能的研究进展,并且概述了迄今为止关于泡沫金属传热模型的研究情况,指出了今后开孔泡沫金属用于板式热交换器的研究方向。  相似文献   

9.
赵雅鑫  赖展程  胡海涛 《化工学报》2021,72(10):5074-5081
泡沫金属具有超大比表面积和高热导率,将其填充于换热管内可用于制冷空调系统的强化传热。研究了R1234ze(E) 在泡沫金属管内的流动沸腾换热和压降特性。实验工况为:干度0.1~0.9,质流密度90~180 kg·m-2?s-1,热通量12.4~18.6 kW·m-2。测试样件为泡沫铜填充管,孔密度为10~40 PPI、孔隙率为90%~95%。实验结果表明,R1234ze(E) 比R410A的传热系数低2%~10%,两相压降低30%~42%;当干度大于0.8时,低质流密度下泡沫金属管内传热系数随干度的增加增幅更大;泡沫金属在强化流动沸腾换热的同时,造成压降显著增加,换热影响因子的范围为1.23~2.90,压降影响因子的范围为6~45。开发了适用于R1234ze(E) 的泡沫金属管内流动沸腾换热和压降关联式,传热系数和两相压降的预测值与95%的实验值误差分别在±15%和±25%以内。  相似文献   

10.
随着航空飞机和航天器不断向高性能发展,热控制系统的紧凑性和散热效率亟需提高。泡沫金属具有超大的比表面积和高热导率,在航空航天热控制领域具有良好的应用前景。对亲水性和疏水改性泡沫金属内的池沸腾换热特性进行了试验研究,并与未改性泡沫金属进行对比,得出了亲疏水性对不同孔密度和孔隙率泡沫金属池沸腾换热特性的影响规律。测试样件为泡沫铜,孔密度为5、20和40 PPI,孔隙率为85%和95%。结果表明,疏水改性可使泡沫金属内池沸腾的起始过热度降低20%~30%;疏水改性泡沫金属和亲水改性泡沫金属分别在低热通量(q<4×105 W/m2)和高热通量(q≥4×105 W/m2)条件下具有最佳的沸腾换热性能;表面改性对于低孔隙率泡沫金属内池沸腾强化换热效果更加显著,且亲水改性的强化效果优于疏水改性。  相似文献   

11.
泡沫金属应用到换热器空气侧有望提高析湿工况下的换热性能。为了了解湿空气在泡沫金属内的热质传递和压降特性,建立了泡沫金属内液滴形成、生长和运动特性的数值模型。基于液滴成核数目和成核临界半径得出液滴形成过程的传质率模型;通过建立液滴与湿空气相界面附近湿空气中水蒸气的组分守恒方程,得出液滴生长过程的传质率模型;通过对不同孔棱柱表面液滴的受力分析,建立在重力和风力的共同作用下的液滴接触角模型。将液滴形成及生长的传质率模型和接触角模型分别作为质量源项和表面张力源项,加入连续性方程、动量方程和能量方程组中,实现对泡沫金属内液滴生长、形成和运动过程模拟。模型的实验验证结果表明,换热量预测值与实验结果的最大偏差为11.9%,压降预测值与实验结果的最大偏差为17.7%。  相似文献   

12.
结构化金属填充床传递特性的数值模拟   总被引:1,自引:1,他引:0       下载免费PDF全文
梅红  李成岳  刘辉  张建文  季生福 《化工学报》2005,56(7):1175-1180
运用计算流体力学(CFD)与计算传热(CHT)方法,对结构化金属填充床内的流体动力学和传热特性进行了详细的模拟,以预测其流场和温度场.分析了床层结构参数和物性的变化对结构化金属填充床传热性能的影响,发现在Re较小且结构化材料和床层空隙率相同的情况下,气固相之间换热的比表面积越大,传热效果越好.进一步将模拟结果与传统颗粒填充床的压降与传热特性进行对照,从而推断结构化金属填充床具有很好的传递性能.  相似文献   

13.
多头螺旋管式换热器换热与压降计算   总被引:1,自引:0,他引:1  
周云龙  孙斌  张玲  李岩  洪文鹏 《化学工程》2004,32(6):27-30,34
从实际工程设计出发,对多头螺旋管式换热器的设计进行了研究,提出了多头螺旋管束受热面结构的设计方法,推荐了螺旋管内外的传热系数和压降的计算关系式。并对200MW蒸汽发生器进行了实例设计计算。  相似文献   

14.
为探究不同截面微肋阵通道内的流动沸腾换热机理,以去离子水为工质,在质量流速为96~224 kg·m-2·s-1,有效热通量为10~240 W·cm-2的范围内,对圆形、菱形、椭圆形微肋阵通道内流动沸腾换热及压降特性进行了实验研究,同时对微通道内流动沸腾的不稳定性进行了分析。通过实验发现:在低热通量下,核态沸腾占主导地位,而在中高热通量下,薄膜蒸发对流换热为主要沸腾机制;沸腾传热系数随着热通量和出口干度的增加而减小,两相压降随着热通量和出口干度的增加而增大;微肋阵肋间形成的次级通道宽度对换热和两相压降有很大的影响,次级通道越宽,气泡越容易脱离,换热效果越好,压降越大;微肋的存在抑制了气泡的反向流动,减小了沸腾不稳定性,推迟了临界热通量的发生,椭圆形微肋阵通道的流动沸腾稳定性最好,而圆形微肋阵通道的流动沸腾稳定性最差。  相似文献   

15.
三叶孔板换热器是一种新型纵向流换热器,由于其具有传热效率高、压降低、抗振结构性能优越等诸多优点而广泛应用于核电行业。搭建三叶孔板换热器壳程传热与压降测试平台,对传热和压降的测量结果进行不确定度分析。对4台三叶孔板换热器模型进行实验研究,结果表明随着Reynolds数的增大,壳程对流传热系数和压降在对数坐标内线性增大;在Reynolds数相同的情况下,随着支撑板间距的增大,三叶孔板换热器壳程Nusselt数逐渐减小,压降逐渐降低,同时压力梯度逐渐减小。为了进一步分析说明三叶孔板换热器壳程传热与阻力性能,基于Bell-Delaware法设计了具有相同结构参数的折流板换热器。与折流板换热器的对比结果表明:三叶孔板换热器壳程Nusselt数平均为折流板换热器的1.25倍,壳程整体压力平均为折流板换热器的0.77,综合性能平均为折流板换热器的1.62倍。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号