首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
在验证了CFD单相流场模拟的基础上,采用均龄理论计算了中试转盘塔内的轴向混合分布,并将计算结果和理论平均停留时间以及组分输运模型计算值进行对比。结果表明:均龄理论能准确预测转盘塔内的轴向混合信息,且其计算时间只需数十秒,远小于传统组分输运模型所需的两周时间,具有低计算量的特点;同时均龄理论克服了传统组分输运模型无法模拟轴向混合空间分布的缺陷,为萃取塔内部结构优化提供了更多信息,是一种高效的模拟方法。后续均龄理论模拟结果的分析预示着转盘塔内的流动近似呈现出级内全混、级间平推的特点,符合萃取操作的需求;而相对于转盘间良好的混合作用,静环间存在明显的流动死区,造成一定的非理想性,其结构有待于进一步的优化。  相似文献   

2.
新型转盘萃取塔在己内酰胺生产中的应用   总被引:1,自引:0,他引:1  
探讨了转盘萃取塔在己内酰胺精制中萃取效率的影响因素,影响转盘萃取塔传质性能的主要因素是级间的轴向返混和沟流。介绍了新型转盘萃取塔的设计及其在70 kt/a己内酰胺精制装置中的工业应用效果。与原装置转盘萃取塔的运行情况比较,新型转盘萃取塔内的固定环平面增加了筛孔挡板,能有效抑制转盘萃取塔内的轴向返混,提高转盘萃取塔的传质效率。  相似文献   

3.
用计算流体力学方法研究转盘塔内的流场   总被引:2,自引:1,他引:1  
利用计算流体力学(CFD) 方法, 以水为连续相, 对三种不同规模的转盘萃取塔(RDC)内的单相流动的流场进行模拟。计算结果表明, 随着塔径的增加, 级内混合减弱, 级间的返混增加。对于φ2 .4 m 的工业转盘塔, 存在约50 % 的径向死区以及20 % 左右的轴向死区。  相似文献   

4.
卢立柱  陈家镛 《化工学报》1990,41(4):387-394
根据转盘萃取塔内连续相溶质浓度的轴向分布进行了参数估算.在估算中应用液滴尺寸分布,将带轴向混合的柱塞流模型应用于塔内连续相,将前混模型应用于分散相.参数估算结果表明:应用d_(32)所获得的连续相轴向混合系数E_c和传质系数k_c的估算值比应用液滴尺寸分布所得的E_c、k_c的估算值偏高;如果忽略液滴生成过程传质的影响,k_c的估算值略有增加,而E_c的估算值则明显偏高.  相似文献   

5.
根据转盘萃取塔内连续相溶质浓度的轴向分布进行了参数估算.在估算中应用液滴尺寸分布,将带轴向混合的柱塞流模型应用于塔内连续相,将前混模型应用于分散相.参数估算结果表明:应用d_(32)所获得的连续相轴向混合系数E_c和传质系数k_c的估算值比应用液滴尺寸分布所得的E_c、k_c的估算值偏高;如果忽略液滴生成过程传质的影响,k_c的估算值略有增加,而E_c的估算值则明显偏高.  相似文献   

6.
为降低搅拌萃取塔内轴向返混并增大通量,在搅拌筛板萃取塔基础上改进内部结构,设计了返混相对较轻的搅拌萃取塔。通过停留时间分布模拟,结合返混模型和流场分析,研究了通道面积、环隙位置、开孔方式和澄清段高度等因素对流体流动特性的影响。结果表明,级间转动挡板可以有效抑制塔内轴向返混,且挡板直径越大,塔内通道面积越窄,抑制返混效果越好;固定环开孔和级间挡板开孔均会带来一定程度的返混,尤以搅拌桨下方的级间挡板开孔影响最为严重;设立澄清段可以降低塔内返混,且澄清段高度越高返混越小,实际应用时考虑到设备成本,澄清段高度与塔径之比以0.7左右为宜。  相似文献   

7.
根据塔内流体运动规律,分别研究了转盘萃取塔单相流和两相逆流时连续相轴向混合的机理.采用光导纤维测定脉冲示踪的浓度响应,从而得到单相流轴向混合Peclet数和两相逆流时分散相对连续相轴向混合的影响(f_w-△~W)的数学表达式.这些表达式对轴向混合的计算,能从高转盘转速扩展到低转速,并能适用于较广的流速范围.为了分析连续相的轴向混合,对分散相滞留量及分散相液滴直径也作了初步研究,并得出了关联式.  相似文献   

8.
采用激光多普勒测速仪(LDV)和计算流体力学(CFD)软件,对转盘萃取塔(RDC)内的单相流流场进行了测量和模拟。发现塔内存在沟流和级间的旋涡流动,级间返混严重,为此发明了一种装有级间转动挡板的新型转盘萃取塔(NRDC)。NRDC与传统的RDC的区别在于安装了设计独特的转动挡板。这些转动挡板安装在2个转盘之间,固定在转动轴上,并与固定环处于同一水平面。LDV测量和CFD模拟结果发现,NRDC可有效抑制沟流和级间旋涡流动。传质实验和流体力学表明,NRDC的传质效率比RDC高20%—40%,而液泛速度大致相当。成功地将NRDC用于引进RDC的扩能改造和新塔的设计中。  相似文献   

9.
《化学工程》2017,(5):56-61
为探究聚氨酯低压混合器内流体流动状况以及不同混合头结构对混合器内组分输运过程的影响,利用流体力学软件Fluent,采用标准湍流模型和标准壁面函数,开启组分输运方程,不开启反应方程,对混合器内非稳态组分输运过程进行三维数值模拟。模拟结果表明:混合器内流体流动状况良好,无明显死区,混合器内组分输运过程混合时间为30 s;当叶片层数为8、周向叶片数为8、叶片倾斜角为15°时,混合头的混合效果最好。为验证模拟的可靠性,对混合器内组分输运过程进行实验验证。结果显示:模拟结果与实验数据具有较高的吻合度,最大相对误差低于5%,这表明利用CFD模型对低压混合器内组分输运过程进行预测和模拟是可行的、有效的。  相似文献   

10.
本文从转盘塔内流体流动特性出发研究了塔内连续相轴向混合。应用光导纤维测试仪测定脉冲示踪的浓度响应。这种方法基本上不影响塔内流场,消除滞后现象,所得讯号可记录于磁带,直接送计算机处理。一个直径为D的液滴由于具有表面能  相似文献   

11.
The liquid‐liquid extraction process is well‐known for its complexity and often entails intensive modeling and computational efforts to simulate its dynamic behavior. This paper presents a new application of the Genetic Algorithm (GA) to predict the modeling parameters of a chemical pilot plant involving a rotating disc liquid‐liquid extraction contactor (RDC). In this process, the droplet behavior of the dispersed phase has a strong influence on the mass transfer performance of the column. The mass transfer mechanism inside the drops of the dispersed phase was modeled by the Handlos‐Baron circulating drop model with consideration of the effect of forward mixing. Using the Genetic Algorithm method and the Numerical Analysis Group (NAG) software, the mass transfer and axial dispersion coefficients in the continuous phase in these columns were optimized. In order to obtain the RDC column parameters, a least‐square function of differences between the simulated and experimental concentration profiles (SSD) and 95 % confidence limit in the plug flow number of the transfer unit prediction were considered. The minus 95 % confidence limit and sum of square deviations for the GA method justified it as a successful method for optimization of the mass transfer and axial dispersion coefficients of liquid‐liquid extraction columns.  相似文献   

12.
Torus reactors are characterized by a homogeneous fluid circulation without dead zones. Torus reactors were used for applications in biotechnology, food processing, polymerization and liquid waste treatments. The relatively simple extrapolation of performances, due to the absence of dead volume, is one of the main advantages of this reactor, with low shear stresses and an effective radial mixing allowing efficient heat dissipation. This study is based on the mixing in order to analyse the fluid circulation, mainly in turbulent flow regime, and to characterize the torus reactor with the axial dispersion plug flow model. The objective of this study is to characterize the flow and the mixing in the torus reactors in batch and continuous modes. The mixing analysis was made according to the flow parameters and to the geometrical characteristics of the reactor and impeller. The mixing in the torus reactor can be characterized by the Péclet number, PeD, defined with torus diameter. A representative model based on plug flow with axial dispersion and partial recirculation was proposed.  相似文献   

13.
Transport equations and boundary conditions for spatial distribution of age moments in steady continuous flows are derived. Mean age is the first moment. The coefficient of variation is obtained from the second moment. Mixing‐cup averaged mean age and higher moments across the exit plane are identical to the corresponding moments of the residence‐time distribution. Numerical solutions for a 2‐D (two‐dimensional) reactor are studied and compared with those from a transient tracer equation. Agreement is excellent. Local tracer distribution function curves reveal that mean age is located on the long tail for both convection dominated short circuiting paths and diffusion dominated dead zones. Computing cost for the mean age and higher moment equations is orders of magnitude lower than that for the transient tracer concentration equation, making this mean age method an efficient tool to study mixing in steady continuous flow systems. © 2010 American Institute of Chemical Engineers AIChE J, 2010  相似文献   

14.
This paper presents a review of important investigations on axial mixing in the continuous phase in rotary disk contactors (RDC) and analyses the various literature data in terms of the flow number (DR N/ue) and a geometry factor Gf. A new model equation has been developed to represent continuous phase axial mixing in the RDC taking into account the factors affecting the recirculation flow within the compartment and the main flow through the compartment in terms of disk-Reynolds number and modified tube-Reynolds number respectively. A satisfactory expression for Gf has been obtained on the basis of the present proposed model and analysis of data of available literature and those of the present work, covering laboratory and industrial size columns of 10 different investigators varying from 3.5 cm to 218 cm dia involving 19 different column geometries. The following forms of generalized correlation for continuous phase axial mixing in RDC have been suggested.   相似文献   

15.
An experimental study of hydrodynamics, axial mixing and mass transfer has been carried out in a newly developed liquid-liquid extraction contactor, namely the open turbine rotating disc contactor (OTRDC). It has been established that the OTRDC can be operated with larger holdups of the dispersed phase, larger interfaces and, hence, more efficient mass transfer than the conventional RDC. In correlating axial mixing data, a combined model has been applied in which both the forward mixing due to drop size distribution and the backmixing of droplets are taken into account. The RTD curves of dispersed phase predicted by the model agree well with the experimental data. Comparison of experimental mass transfer data with those predicted by the proposed axial mixing model and the theoretical single drop model shows that they are in good agreement.  相似文献   

16.
This paper introduces and exploits a hybrid numerical approach for fully resolved numerical simulations of reactive mixing in T-shaped microreactors and thereby enables a computational analysis of how chemical reactions interact with convective and diffusive transport. The approach exploits the fast redirection of the flow inside the mixing channel, resulting in a flow field with positive axial flow component everywhere after a short entry zone. This allows handling the axial flow direction as a pseudo-time variable, so that the evolution of the concentration profile can be computed consecutively on successive cross sections, following the main axial flow direction. With this approach the finest length scales, given by the Batchelor length scale, can be resolved for such a reactive mixing process inside a T-microreactor at stationary flow conditions. This allows for a detailed analysis of the mixing state as well as important characteristics of the reactive mixing process like yield and selectivity. The concrete numerical simulations yield local diffusion times inside the reactor, reveal the influence of the strength of the secondary flow on the progress of the chemical reaction and show how local selectivities result from the species transport.  相似文献   

17.
A precise model for predicting liquid-liquid extraction column efficiency based upon assumed hydrodynamic, axial mixing and mass transfer behaviour has been formulated and solved numerically. The complex nature of the dispersed phase can be better described by drop-size-dependent residence time distribution (RTD). Both the variation of axial velocities due to drops of different sizes, i.e. forward mixing, and the axial dispersion for the drops of the same size have been considered in this model. The computed results reveal that the effects of both varying velocities and dispersion of drops on extraction efficiency are appreciable and cannot be neglected, and the efficiency may be overestimated if only a forward mixing model is adopted. The comparison of the experimental values of NODP with those predicted shows that the mass transfer data obtained in RDC agree well with the values predicted by the present model for the case of solute transfer in cd direction, and are slightly higher than the predicted ones for the transfer in dc direction.  相似文献   

18.
New development of mean age theory is discussed for quantitative analysis of mixing and age distribution in steady continuous flow stirred tank reactors. A new relationship between the moments of age and the moments of residence time are derived. With this new relationship the variance of residence time distribution can be computed much more efficiently and accurately. The relationships of three existing variances of age are described and a new set of variances and the degree of mixing are defined. The theory is used to characterize mixing performance in a CFSTR with different layouts of an inlet and an outlet. Mean age and higher moments of age in the reactors are obtained from CFD solutions of their steady transport equations. The spatial distribution of mean age reveals details of the spatial non-uniformity in mixing. Variances of age and the degree of mixing discussed by Danckwerts and Zwietering are computed for the first time in the literature for non-ideal stirred tank reactors. It is found that although these measures are useful, certain key features in non-uniform mixing are not reflected accurately. Results show that the new set of variances and the degree of mixing more accurately characterize the non-uniform mixing in the reactors.  相似文献   

19.
Twin screw extruders are finding increased usage in reacting and devolatilizing applications. Using self-wiping profiles, the twin screws fulfill the requirement that there be no “dead” or “unmixed” zones. Agitator design must be chosen with care so that a reasonable balance can be obtained between forwarding rate, surface-generation rate, vapor passageway, power, and axial mixing. Techniques have been developed for measuring residence time distributions and characterizing axial flow behavior. The method also permits direct determination of the holdup in starved barrel applications. Data on residence time distribution are presented for 4-in. diameter twin screw equipment with a variety of rotor configurations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号