共查询到19条相似文献,搜索用时 93 毫秒
1.
《化工学报》2016,(11)
为探究纳米粒子浓度对纳米流体制冷剂在微细通道中流动沸腾气液两相压降影响,运用超声波振动法制备质量分数为0.05%、0.1%、0.2%、0.3%、0.4%均匀、稳定的Al_2O_3/R141b纳米流体制冷剂,在直接激光烧结(DMLS)微型换热器中,设计系统压力为176 k Pa,纳米流体制冷剂入口温度为40℃,在热通量21.2~38.2 k W·m-2和质量流率183.13~457.83 kg·m-2·s-1工况下,研究纳米粒子浓度对Al_2O_3/R141b纳米流体制冷剂流动沸腾气液两相压降影响。研究结果表明:纳米粒子浓度对纳米流体制冷剂在微细通道中流动沸腾气液两相压降有显著影响,气液两相压降随纳米流体制冷剂的纳米粒子浓度增加而减少,在纯制冷剂中R141b加入纳米粒子Al_2O_3,不同质量分数的纳米流体制冷剂流动沸腾气液两相压降降低5.5%~32.6%;通过SEM和表面静态接触角测试方法,发现纳米流体制冷剂沸腾气液两相压降随质量分数增加而减少的原因是纳米颗粒沉积在通道表面,增加了微通道表面的润湿性;对比国际上3种比较经典流动沸腾两相压降模型,并基于Qu-Mudawar关联式和Zhang关联式进行修正,得出两相压降结果的85%数据点位于修正后的关联式模型值的±15%范围之内,同时实验结果与修正后的模型结果偏差MAE值为11.7%,说明修正后关联式能有效预测本工况下实验值。 相似文献
2.
《化学工程》2016,(1)
为探讨热流密度对二相流动沸腾摩擦压降的影响,并结合可视化探究改变热流密度时产生压降不稳定现象的机理,文章以R22制冷剂为实验工质,在截面尺寸高×宽分别为2.0 mm×2.0 mm,2.0 mm×1.0 mm和2.0 mm×0.6 mm 3种不同矩形微通道中,进行二相沸腾传热实验。实验表明:此实验条件下,R22制冷剂在微通道内进行二相沸腾传热时,二相摩擦压降是产生压降的主要因素;二相摩擦压降随热流密度的增加而增大,而且低热流密度下增幅较快,当热流密度增加到一定程度后,二相摩擦压降增加趋势变缓;在质量通量为253.2 kg/(m2·s)的条件下,热流密度从4.5 k W/m2增加到18.1 k W/m2时,流体流型经历了局部干涸再润湿的周期性变化,这种变化过程中压降波动较大。 相似文献
3.
以氮气和去离子水为研究体系,采用混合均质模型,在内径分别为900μm和500μm的圆形微通道中针对微通道反应器内气液二相流的压降进行研究。分析了黏度、气液表观速度等因素对微通道反应器中气液二相摩擦压降的影响。结果表明:均相流模型与分相流模型在微通道反应器内适用性均有限;采用Mc Adams黏度公式对微通道内的压降进行理论计算,其结果与实际测量所得压降值吻合良好;微通道反应器中的气液二相摩擦压降随气液二相表观速度的增大而增大;将实验结果与分相流模型的预测值进行比较,分相流模型中Lockhart-Martinelli关系式不能很好地预测微通道中气液二相流的摩擦压降。 相似文献
4.
5.
微通道沸腾冷却在电子器件方面的应用近年备受关注。将多孔烧结微通道作为微电子器件的有效冷却方案进行了流动沸腾传热性能的实验研究,重点围绕热通量和通道宽度对流动沸腾特性的影响。烧结微通道采用铜粉加压烧结的方法,使用150μm树枝状铜粉进行烧结,制备了三种通道宽度分别为1.8、0.6和0.2 mm的并联微通道,对应的槽数分别为11、22和33槽。研究发现:存在最优通道宽度,其综合沸腾换热效果达到最优。在4 L/h流量下,中等宽度样品最高传热系数可达200 kW/(m2·K),临界热通量可达到170 W/cm2左右。可视化研究发现:通道宽度对压力脉动曲线会造成很大影响,适中的通道宽度压力脉动曲线更为有序,大大缓解压力脉动从而提升微通道的沸腾换热性能。 相似文献
6.
分别以质量分数为0.2%、0.5%和0.8%的Al2O3-R141b纳米制冷剂和纯制冷剂R141b为工质,在水力直径为1333μm的矩形微细通道内进行了流动沸腾实验,分析了纳米颗粒浓度对工质两相摩擦压降的影响,对比了实验前后换热壁面的表面能。研究结果表明:实验工况相同时,质量分数为0.2%、0.5%和0.8%的纳米制冷剂的两相摩擦压降均比纯制冷剂低,降低的最大幅度分别约为11.6%、14.8%和19.2%;实验后纳米颗粒在换热壁面附着,使壁面表面能增大,质量分数为0.2%、0.5%和0.8%的纳米制冷剂实验后换热壁面表面能比实验前分别增大了1.26倍、1.44倍和1.91倍,减小了换热表面的粗糙度和提高其润湿性,使得工质两相摩擦压降减小;根据实验值与模型预测值的对比情况,对Qu-Mudawar模型进行修正,拟合得到的关联式能很好预测实验值,平均绝对误差为9.78%。 相似文献
7.
纳米Al2O3粒子的制备 总被引:18,自引:0,他引:18
以异丙醇铝Al(OPr^i)3(即Al(OCH(CH3)2)3)为原料,用醇盐水解法制备纳米氧化铝粒子,比较系统地研究了制备条件(加水方式,反应物配比,浓度,溶剂等)对产物粒子颗粒大小的影响,采用TEM,X射线衍射等技术对所得产品性能进行了表征,实验结果表明,纳米Al2O3粒子分散性好,粒径在20-100nm之间,颗粒的形状和尺寸随反应条件的不同而变化。 相似文献
8.
螺旋通道因其优越的传热性能在强化传热领域有着重要的应用。近年来,高热流密度下设备的散热问题严重制约着先进技术的高速发展,传统螺旋通道单相强化传热技术已难以满足如此高的散热要求。由此,学者们开始探索以螺旋通道和流动沸腾传热相结合的复合强化传热技术。但由于螺旋通道特有的结构导致管内工质会受离心力的影响产生二次流,使得流动沸腾的情况较直通道更复杂,因此许多学者研究螺旋通道流动沸腾传热得出的结论并不一致。本文主要综述了近年来常规和微细尺度螺旋通道内流动沸腾的研究进展,阐述和分析了质量流率、干度、压力等参数对螺旋通道传热系数及临界工况的影响。指出了实验工况及螺旋通道结构的不同可能是导致结果存在分歧的主要原因,重点归纳了研究者根据实验结果拟合得到的流动沸腾传热实验关联式,并对经典直通道及螺旋通道沸腾传热关联式用于预测螺旋通道沸腾传热系数时的优缺点给予评价,指出今后螺旋通道内流动沸腾流传热的研究方向。 相似文献
9.
建立了三维单流道模型,模拟了波纹倾角和波纹节距对相变流动传热和压降特性的影响。结果表明,沸腾传热和压降特性同时受到流动形式和触点影响,"曲折型"流动有利于液膜蒸发增强传热,触点对气相的扰动作用小于液相,因此在气相体积分数较高的区域的触点处气液相变转化现象不明显。传热系数随波纹倾角的增加而增大,随波纹节距的增加而减小,但在相同入口Reynolds数下波纹节距λ=16 mm比14 mm的传热系数大,主要是因为流动形式的改变在某种程度上减弱了触点数目减少对传热的影响。β=75°和λ=10 mm时传热性能最好。沸腾流动的压降随波纹倾角的增大先升高后降低,在β=65°左右达到峰值,随着波纹节距的增大而降低。 相似文献
10.
使用表面张力不同的纯水和乙醇作为液体,用氮气作为气体,在水平矩形微通道(dh = 0.29 mm)中开展两相流摩擦压降的实验研究,对通道进出口的压力进行了测量.结合流型说明了表面张力对摩擦压降产生的影响,并将实验压降值与均相流模型和分相流模型的预测值进行了对比,结果表明:在低压降区域,均相流模型预测值与实验值符合较好.... 相似文献
11.
Jianyang Zhou Xiaoping Luo Cong Deng Mingyu Xie Lin Zhang Di Wu Feng Guo 《中国化学工程学报》2017,25(12):1714-1726
Al2O3/R141b+Span-80 nanorefrigerant for 0.05 wt.% to 0.4 wt.% is prepared by ultrasonic vibration to investi-gate the influence of nanoparticle concentrations on flow boiling heat transfer of Al2O3/R141b+Span-80 in micro heat exchanger by direct metal laser sintering.Experimental results show that nanoparticle concentrations have significantly impact on heat transfer coefficients by homogeneity test of variances according to mathemat-ical statistics.The heat transfer performance of Al2O3/R141b+Span-80 nanorefrigerant is enhanced after adding nanoparticles in the pure refrigerant R141b.The heat transfer coefficients of 0.05 wt.%,0.1 wt.%,0.2 wt.%,0.3 wt.% and 0.4 wt.% Al2O3/R141b+Span-80 nanorefrigerant respectively increase by 55.0%,72.0%,53.0%,42.3% and 39.9% compared with the pure refrigerant R141b.The particle fluxes from viscosity gradient,non-uniform shear rate and Brownian motion cause particles to migrate in fluid especially in the process of flow boiling.This mi-gration motion enhances heat transfer between nanoparticles and fluid.Therefore,the heat transfer performance of nanofluid is enhanced. It is important to note that the heat transfer coefficients nonlinearly increase with nanoparticle concentrations increasing.The heat transfer coefficients reach its maximum value at the mass concentration of 0.1% and then it decreases slightly.There exists an optimal mass concentration corresponding to the best heat transfer enhancement. The reason for the above phenomenon is attributed to nanoparticles deposition on the minichannel wall by Scanning Electron Microscopy observation.The channel surface wettability increases during the flow boiling experiment in the mass concentration range from 0.2 wt.% to 0.4 wt.%.The channel surface with wettability increasing needs more energy to produce a bubble.Therefore,the heat transfer coefficients decrease with nanoparticle concentrations in the range from 0.2 wt.% to 0.4 wt.%.In addition,a new correlation has been proposed by fitting the experimental data considering the influence of mass concentrations on the heat trans-fer performance.The new correlation can effectively predict the heat transfer coefficient. 相似文献
12.
微通道内气液两相流空隙率与压力降对微反应器的热质传递性能有显著影响,是微反应器的重要设计参数。采用高速摄像仪和压力测量系统分别对矩形微通道内单乙醇胺水溶液化学吸收CO2过程的空隙率和压力降进行了研究,考察了弹状流下气液两相流量与化学反应速率对空隙率及压力降的影响。结果表明:当液相流量一定时,微通道内空隙率和压力降均随着气相流量的增大而增大,空隙率随化学反应速率的增大而减小,压力降随化学反应速率的增大而增大;当气相流量一定时,随着液相流量和化学反应速率的上升,微通道内空隙率下降,而压力降上升。提出了微通道内伴有化学吸收的空隙率和压力降的半理论预测模型,模型平均误差分别为15.79%和11.12%,显示了良好的预测性能。 相似文献
13.
丙烷(R290)作为一种性能优异的自然制冷剂,其两相流动压降特性在换热器设计及制冷系统优化等方面起到重要作用,而且目前对于低质量流率以及低饱和压力条件下的压降分析相对较少,且仅有少数研究结合流型进行分析。因此,开展了R290在内径6 mm的水平光管内压降特性实验研究。在如下实验工况范围内,质量流率70~190 kg·m-2·s-1,热通量10.6~73.0 kW·m-2,饱和压力0.215~0.415 MPa,干度0~1,获取了压降实验数据,并进一步基于实验工况以及流型分析了加速压降、两相摩擦压降的变化趋势。对比了现有的摩擦压降关联式并基于Friedel模型,使用Rev/Rel 和液相Froude数Fr表征气液相相互作用,获取了一个新的基于流型的两相摩擦压降关联式。新模型可以很好地预测R290实验数据,预测结果的平均相对偏差(ARD)为-0.2%,平均绝对相对偏差(AARD)为5.2%,λ30%为97.9%。对比文献中的实验数据,10组数据预测结果的ARD为10.0%,AARD为19.3%,λ30%为80.3%,由此可见新模型具有一定的预测精度和适用性。 相似文献
14.
过冷沸腾在高热流冷却场合得到了广泛的应用,如聚变堆偏滤器冷却、压水堆堆芯冷却。其中,过冷沸腾流动阻力是换热系统设计的关键内容之一。试验研究了高热流条件下竖直通道内水的过冷沸腾流动阻力特性,试验段为内径6 mm、长径比44.4的不锈钢圆管。试验参数范围:热通量7.5~12.5 MW/m2,质量流速6000~10000 kg/(m2?s),系统压力3~5 MPa,进口流体温度80~200℃。分析了质量流速、热通量、压力、沸腾数、Jacob数等参数对阻力的影响。结果显示,过冷沸腾流动阻力随着热流及质量流速的增加而增加,随压力增加而减小。将试验数据与文献中的经验关联式作对比,结果表明各关联式的预测误差较大,主要归结于拟合参数及工作流体的差异。研究发现管径尺寸效应也是影响阻力的一个因素,为此在前期成果的基础上,提出了一个添加管径因素修正项的经验关联式,该关联式的预测误差在±18%范围内。 相似文献
15.
对填充泡沫金属的圆管中R410A流动沸腾的两相流压降特性进行了实验研究。实验对象为两根内径13.8 mm,分别填充5 PPI/95%孔隙率和10 PPI/95%孔隙率的泡沫铜的圆管。实验工况涵盖:蒸发压力995 kPa;质流密度30~90 kg·m-2·s-1;热通量5.9~16.5 kW·m-2;入口干度0.175~0.775。实验结果表明:泡沫金属显著增加制冷剂流动沸腾的压降,在入口干度为0.775,质流密度为90 kg·m-2·s-1时,内嵌10 PPI 泡沫金属的圆管中的压降梯度达56 kPa·m-1;泡沫金属PPI越大,压降增加越多,相同工况下内嵌10 PPI泡沫金属圆管中制冷剂流动沸腾的压降是内嵌5 PPI泡沫金属圆管中的压降的1.2倍左右。根据实验数据开发了适用于填充泡沫金属的内径13.8 mm圆管中的流动沸腾的压降关联式,结果表明90%的预测值与实验值的偏差在±15%以内。 相似文献
16.
研究粉煤密相气力输送系统高压、高浓度煤粉通过不同节流比(0.44、0.55、0.7)、收缩角(2.5°、5°、9°)、扩张角(2.5°、8°、13°)、喉段长度(23d、43d、80d)的文丘里管的流动特征和压差特性。结果表明,不同结构参数的文丘里管的量纲1化压力分布趋势一致,但程度不一。其中节流比影响最为显著,并最直接地影响煤粉流经文丘里管的压差。节流比越小,总压差越大,扩张段压差显著增大。其他结构参数在各自的结构序列下主要改变文丘里管内压力分布,而对总压差改变不大。2.5°收缩角的收缩段压差最大,高浓度体系下5°和9°收缩角的收缩段压差差别不大。80d喉段长度的喉段压差最大。8°扩张角的扩张段压差最小。引入固相动量通量,获得本系统内煤粉流经文丘里管的压降经验方程,大部分实验点的计算偏差在30%以内,方程计算效果较好。 相似文献
17.
泡沫金属具有超大比表面积和高热导率,将其填充于换热管内可用于制冷空调系统的强化传热。研究了R1234ze(E) 在泡沫金属管内的流动沸腾换热和压降特性。实验工况为:干度0.1~0.9,质流密度90~180 kg·m-2?s-1,热通量12.4~18.6 kW·m-2。测试样件为泡沫铜填充管,孔密度为10~40 PPI、孔隙率为90%~95%。实验结果表明,R1234ze(E) 比R410A的传热系数低2%~10%,两相压降低30%~42%;当干度大于0.8时,低质流密度下泡沫金属管内传热系数随干度的增加增幅更大;泡沫金属在强化流动沸腾换热的同时,造成压降显著增加,换热影响因子的范围为1.23~2.90,压降影响因子的范围为6~45。开发了适用于R1234ze(E) 的泡沫金属管内流动沸腾换热和压降关联式,传热系数和两相压降的预测值与95%的实验值误差分别在±15%和±25%以内。 相似文献
18.
本文采用XRD研究了加料方式对共沉淀法制备的Ni/Al2O3的影响。结果表明:采用并流的方法制备的Ni/Al2O3中Ni分散度较好。 相似文献
19.
针对新型混合工质R245fa/R141b,开展水平光滑管(外径10 mm)内工质沸腾换热特性的实验研究,对比纯工质与混合工质的换热性能及4种常用关联式的预测精度。结果表明:纯工质与混合工质的沸腾传热系数均随质量流速和热通量的增加而增大,随饱和压力的增加而减小;随干度的增加,沸腾传热系数均先增大后减小,即存在“过渡干度”,且混合工质的过渡干度大于纯工质;干度小于0.55时,混合工质传热系数小于纯工质;干度大于0.55后,混合工质的传热系数更高;随R245fa质量分数的增加,混合工质的沸腾传热系数增大。在所选关联式中,Gungor-Winterton关联式能准确地预测工质在光滑管内的沸腾换热特性,平均相对误差为16.67%。 相似文献