首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
利用相变材料(PCM)正十四烷的固液相变过程,吸收甲烷水合释放的热量,实现了直接换热强化水合过程的目的。正十四烷与水混合制成相变乳液(PCE),经冷却后形成浆液。在半间歇水合器中,测定并计算了甲烷水合物在此浆液中的收率和生成速率。为了提高计算的准确性,设计了一套PVT装置,通过减压法实验测定了低温条件下甲烷在正十四烷中的溶解度。实验结果表明:低温条件下,甲烷在正十四烷中的溶解度与压力基本呈线性关系;相比于间接传热方式下的水合过程,相变浆液中甲烷水合物收率及生成速率得到了有效提升。  相似文献   

2.
罗艳托  朱建华  陈光进 《化工学报》2006,57(5):1153-1158
研究了透明鼓泡塔中含促进剂四氢呋喃(THF)体系中甲烷水合物的生成动力学.分别考察了进气速率、温度、压力、水合物体积分数对甲烷消耗速率的影响.根据Chen-Guo水合物生成机理,采用基础水合物生成反应的量纲1 Gibbs自由焓变-ΔG/RT作为反应的推动力,建立了水合物生成动力学模型,模型中考虑了体系温度、压力和气液接触比表面积的影响.把模型应用于甲烷气体消耗速率的计算,其模型预算结果与实验数据吻合良好,实验结果和反应动力学模型将有助于工业水合反应器的设计和操作条件的设定.  相似文献   

3.
建立了可模拟海底天然气水合物形成环境的大型三维成藏实验模拟装置,其主体高压反应釜内径500 mm,高1000 mm。在此基础上,采用填砂模型,进行了甲烷溶解运移体系下甲烷水合物生成与聚集过程的实验模拟分析。实验流程为:甲烷溶解于NaCl溶液中,再泵送进入高压反应釜,在沉积层中渗流并生成甲烷水合物。通过30个电阻率传感器监测甲烷水合物的生成和聚集过程。实验结果表明,甲烷溶解运移体系下甲烷水合物生成之后首先分散在溶液中,当溶液的总甲烷浓度(溶解的甲烷及水合物分散相中的甲烷)达到操作条件下盐溶液体系甲烷饱和溶解度后,甲烷水合物从溶液中析出。电阻率分布实验结果表明,析出甲烷水合物的聚集区域受溶液流动控制。  相似文献   

4.
水合物储运(NGH)是近几年发展起来的天然气储运技术,已具备实现工业化的潜力。但水合物的生长是传质传热控制的反应,因此在放大实验中存在诸多不确定因素。针对该问题,对水合物反应器中多孔材料内甲烷水合物生成传热过程建立了基于化学反应动力学和多孔材料内传质传热的甲烷水合物生成传热数学模型,可用于计算反应器内水合物生成分布和热量分布,指导水合反应器的设计和优化。通过模拟与实验数据对比验证了该模型的可靠性,并对使用了不同热导率填料的水合反应过程进行数值模拟。结果显示,模拟值与实验值的绝对平均相对误差小于6%,生成传热模型准确性高;在水合反应过程中,热量传递是影响水合物生成速率的关键因素之一。导热不良时,易在水合物生成中心部分形成局部过热,对水合物生长造成热抑制。在进行水合物生成放大实验时,应特别注意反应器内部的热量控制。  相似文献   

5.
水合物储运(NGH)是近几年发展起来的天然气储运技术,已具备实现工业化的潜力。但水合物的生长是传质传热控制的反应,因此在放大实验中存在诸多不确定因素。针对该问题,对水合物反应器中多孔材料内甲烷水合物生成传热过程建立了基于化学反应动力学和多孔材料内传质传热的甲烷水合物生成传热数学模型,可用于计算反应器内水合物生成分布和热量分布,指导水合反应器的设计和优化。通过模拟与实验数据对比验证了该模型的可靠性,并对使用了不同热导率填料的水合反应过程进行数值模拟。结果显示,模拟值与实验值的绝对平均相对误差小于6%,生成传热模型准确性高;在水合反应过程中,热量传递是影响水合物生成速率的关键因素之一。导热不良时,易在水合物生成中心部分形成局部过热,对水合物生长造成热抑制。在进行水合物生成放大实验时,应特别注意反应器内部的热量控制。  相似文献   

6.
裴俊华  杨亮  汪鑫  胡晗  刘道平 《化工学报》2021,72(11):5751-5760
提高水合物生成速率和储气密度对天然气水合物技术应用非常重要。将三种孔密度的泡沫铜(CF)分别浸入十二烷基硫酸钠(SDS)溶液中构建水合储气强化体系,在高压静态反应釜中研究泡沫金属对甲烷水合物生成动力学特性。实验结果表明,泡沫铜骨架能为水合物生成提供充足的结晶点,同时可作为水合物生长过程水合热迁移的“高速公路”。甲烷水合物在SDS/CF体系中可快速生成,最大水合储气速率分布在19.24~21.04 mmol·mol-1·min-1之间,其中添加15 PPI泡沫铜的SDS溶液储气量最高(139 mmol·mol-1),且达到最大储气量90%所用时间最短(10.1 min)。在6.0~8.0 MPa压力下,相比SDS溶液,添加15 PPI泡沫铜的SDS溶液储气量提高了8.8%~35.6%,储气速率提高了4.7%~40.4%;特别在压力为5.0 MPa时,该孔密度SDS/CF体系储气量甚至比SDS溶液增加13倍,储气速率增加16倍。  相似文献   

7.
为进一步探明搅拌对甲烷水合物生成和分解动力学特性的影响,借助容积约为522mL,最高操作压力21MPa的高压全透明反应釜装置,开展了不同搅拌条件下甲烷水合物的生成、分解和浆液流动实验,得到了搅拌对水合物生成量、生长速率和分解速率的影响规律,基于搅拌电机扭矩值分析了不同搅拌速率下水合物浆液的流动特性。搅拌电机型号ViscoPakt Rheo-57,带有扭矩测量功能,测量最大范围57N·cm,精度±0.04N·cm。结果表明:在水合物开始快速生成的前期,水合物的最大生成量、最大生长速率及平稳生长速率都随搅拌速率的增大而增大,进一步验证了传质是控制水合物生成过程的首要因素;在水合物分解阶段,搅拌能提高水合物颗粒的分散性,促进分解气的运移产出;此外,不同搅拌速率下,水合物浆液的电机扭矩随着水合物体积分数的增大都呈现先保持平稳再逐渐增大最后剧烈波动的规律,由此得到了水合物浆液携带固相颗粒的临界体积分数。研究结论在一定程度上揭示了水合物的生长和分解机理,为动力学预测模型研究提供了参考。  相似文献   

8.
利用天然气水合物合成实验系统,采用5%纳米SiO2与纯净水配制的干水和纯甲烷为原料,获得了水合物生成过程中温度、压力、反应速率以及最终的储气密度之间的关系。通过以温度和压力值作为变量进行实验结果表明:在高压条件下,反应温度接近0℃,反应的速率较快,生成的水合物中甲烷含量也较高。在低温条件下,压力接近8 MPa时,干水固化甲烷效果较好。  相似文献   

9.
甲烷在柴油+水+Span20乳液体系中溶解度的测定   总被引:1,自引:0,他引:1  
气体在乳液中的溶解度是决定水合物生成速率快慢的重要因素。为此结合排水法并采用自制加工的高压反应釜测定了在温度范围274.2~282.2 K和压力范围0.30~6.40 MPa下不同Span 20(失水山梨醇单月桂酸酯,简称Span 20)浓度及含水率时甲烷在柴油+水乳液体系中的溶解度,分别考察了温度、压力、含水率及Span 20浓度对溶解度的影响。实验结果表明,当含水率为30%(V/V)及Span 20浓度为3.0%(wt)时,甲烷在乳液中的溶解度随压力的增加几乎呈线性增加,在实验范围内溶解度最高达到0.0784(mol·mol-1),而温度对溶解度的影响相对较小;在近水合物生成区域,含水率的增加能显著降低甲烷在乳液体系中的溶解度,而在相同的温度、压力及含水率条件下,溶解度却随Span 20浓度的增加而增加,表明Span 20能促进甲烷在乳液中的溶解。  相似文献   

10.
为研究介观尺度下甲烷水合物的生成速率及储气量等特性,选用介孔分子筛SBA-15为多孔介质,并添加热力学促进剂THF、TBAB和表面活性剂SDS以提高水合反应速率。水合物生成实验在定容恒温条件下进行,压力选取2. 0 MPa和1. 8MPa,温度选取282. 15 K和279. 15 K。实验结果表明,在添加剂的共同作用下,介观尺度下水合物合成速率得到显著提高;反应过程中温度波动较小,最大为0. 6 K,表明其具有良好的传热性;在水合物储气量方面,实验中最大储气量达到45. 826 mmol(10 m L水),降温、增压能够提高水合物储气量;同时高压和低温能够有效地提高介观尺度下水合反应速率,最高生成速率达到2. 335 mmol/min;在促进水合物生成、提高水合物储气能力、加快水合物反应速率方面THF均优于TBAB。  相似文献   

11.
在CO2水合物浆流动传热特性测试实验系统上,采用套管式电加热的方法对CO2水合物浆进行了分解实验,并对CO2水合物浆的流动传热特性进行了分析。对CO2水合物浆的相变特性进行了研究,得到CO2水合物浆的相变温度在8~12℃。研究了在固相体积分数为13.2%以及流速为0.45m/s的条件下CO2水合物浆在内径为8mm的水平不锈钢管中的传热特性,计算得到CO2水合物浆在不锈钢水平圆管中的对流传热系数为1500~1800 W/(m2·K),并且其在流动传热过程中呈现先增大随后趋向平稳的趋势,在水合物的相变区相应的对流传热系数表现最大。研究了分解加热功率对管壁温和对流传热系数的影响,发现加热功率对管壁温度的影响较强。在实际应用中可利用CO2水合物浆的相变作用来增强传热,提高传热效率。  相似文献   

12.
This paper reports an experimental study on the effects of surfactant additives on the formation of a clathrate hydrate in a quiescent methane/liquid-water system, which was initially composed of a 300-cm3 aqueous phase and an ∼640-cm3 methane-gas phase, then successively provided with methane such that the system pressure was held constant. The surfactants used in the present study were three sodium alkyl sulfates appreciably different in the alkyl chain length—they were sodium dodecyl sulfate (abbreviated as SDS), sodium tetradecyl sulfate (abbreviated as STS) and sodium hexadecyl sulfate (abbreviated as SHS). For each surfactant added to water up to, at most, 1.82-3.75 times the solubility, we performed visual observations of hydrate formation simultaneously with the measurements of methane uptake due to the hydrate formation. The qualitative hydrate-formation behavior thus observed was almost the same irrespective of the species as well as the initial concentration of the surfactant used; i.e., thick, highly porous hydrate layers were formed and grew on the horizontal gas/liquid interface and also on the test-chamber wall above the level of the gas/liquid interface. In each experimental operation, hydrate formation continued for a limited time (from ∼6 to ) and then practically ceased, leaving only a small proportion (typically 15% or less) of the aqueous solution unconverted into hydrate crystals. The variations in the time-averaged rate of hydrate formation (as measured by the rate of methane uptake) and the final water-to-hydrate conversion ratio with the initial concentration of each surfactant were investigated. Moreover, we examined the promotion of hydrate formation with the aid of a water-cooled cold plate, a steel-made flat-plate-type heat sink, vertically dipped into the aqueous phase across the gas/liquid interface.  相似文献   

13.
煤层气水合化的基础研究   总被引:2,自引:0,他引:2  
自行设计制造了一套可用于煤层气水合物生成与分解的可视化实验系统,利用该实验系统研究了阴离子表面活性剂、非离子表面活性剂和多孔介质煤对煤层气水合物生成的影响,进行了煤层气水合物生成相平衡参数和分解热力学方面的研究。结果表明:表面活性剂的加入促进了水合物的生长,但水合物的生成情况与表面活性剂的种类和浓度有关;表面活性剂的加入有效地改变了水合物生成的热力学条件;水合物分解过程所需热量较多,证实了利用煤层气水合化技术预防煤矿煤与瓦斯突出以及进行煤层气固化储运的可行性。  相似文献   

14.
The methane hydrate heat of decomposition was directly measured up to 20 MPa and 292 K using a high pressure differential scanning calorimeter (DSC). The methane hydrate sample was formed ex-situ using granular ice particles and subsequently transferred into the DSC cell under liquid nitrogen. The ice and water impurities in the hydrate sample were reduced by converting any dissociated hydrate into methane hydrate inside the DSC cell before performing the thermal properties measurements. The methane hydrate sample was dissociated by raising the temperature (0.5-1.0 K/min) above the hydrate equilibrium temperature at a constant pressure. The measured methane hydrate heat of dissociation (H→W+G), ΔHd, remained constant at 54.44±1.45 kJ/mol gas (504.07±13.48 J/gm water or 438.54± 13.78 J/gm hydrate) for pressures up to 20 MPa. The measured ΔHd is in agreement with the Clapeyron equation predictions at high pressures; however, the Clausius-Clapeyron equation predictions do not agree with the heat of dissociation data at high pressures. In conclusion, it is recommended that the Clapeyron equation should be used for hydrate heat of dissociation estimations at high pressures.  相似文献   

15.
Information on the rheological characteristics of clathrate hydrate slurry is vital due to its diverse applications including hydrate slurry transportation as in seawater desalination by gas hydrate process, gas delivery through slurry pipelines, cold thermal energy storage, and secondary refrigeration by hydrate slurries. The current study experimentally investigated the rheological behavior of Tetrafluoroethane (Freon) hydrate slurry formed from R-134a and water serving as a medium for sea water desalination. Experiments were performed in a flow loop with a volume of 5.68?L and an inner pipe diameter of 21.5?mm, which was immersed in a constant temperature bath to maintain hydrate stable condition. Experiments were conducted with two phases in the loop; solid hydrate particles and liquid water. The hydrate solid volume fraction ranged from 15.8 to 31.7?vol%. Pressure drops along the straight section of the pipe were monitored while temperature, solid volume fraction and flow rate were kept constant at desired values. The experimental results indicated that Freon slurry can be considered as a pseudo-plastic fluid. The shear-thinning characteristics of Freon slurry became more pronounced as the hydrate solid fraction increased. An empirical power law type equation that relates the apparent viscosity of the Freon slurry to the hydrate solid volume fraction and shear rate was developed and compared with experimental values. The experimental results well supported the values of the apparent viscosity calculated from the modeled equations.  相似文献   

16.
A method of direct heat removal resulting from the phase change of n‐tetradecane was used to intensify the heat transfer during hydrate formation. The growth rates of methane hydrate in aqueous slurries containing 25–45 wt % of solid n‐tetradecane were investigated at pressures between 4.70 and 6.46 MPa (gauge) and near the fusion point of solid n‐tetradecane. Methane hydrate growth started at a practically constant rate, which became variable after a sudden increase. Two rate laws were established to correlate with the experimental data for the constant and variable rate stages. The methane hydrate growth rates achieved with solid n‐tetradecane were significantly enhanced compared with those obtained under indirect heat removal. © 2015 American Institute of Chemical Engineers AIChE J, 61: 3441–3450, 2015  相似文献   

17.
实验采用激光拉曼和X射线粉末衍射(PXRD) 在253 K,常压条件下对甲烷水合物的分解过程分别进行了原位测量。研究发现,位于表层的甲烷水合物在前30~50 min内发生分解并生成Ⅰh冰相,随后表层冰相对内层水合物相的包覆引起了“自保护”效应的产生并导致甲烷水合物分解速率显著降低。分解过程中,甲烷在水合物大小笼中的含量之比始终保持在3.2左右,同时水合物晶面特征峰峰面积也按照相同的曲线下降,表明甲烷水合物以晶胞为单位进行整体分解。Ⅰh冰的各个晶面特征峰峰面积差异化的增长曲线表明形成的Ⅰh冰相倾向于片状生长,有助于在水合物表面生成一层冰膜,进而产生“自保护”效应。  相似文献   

18.
水合物法分离H2+CH4体系的模拟计算   总被引:1,自引:0,他引:1       下载免费PDF全文
冯英明  陈光进  马庆兰 《化工学报》2004,55(9):1541-1545
This paper presents two novel conceptions in multi-stage hydrate separation technology for H2 CH4 system, i.e. the multi-stage equilibria adsorption and the reaction adsorption. It is assumed that there already exists clathrate structure before the hydration reaction, and the hydration reaction is taken as gaseous adsorption in the crystal structure of hydrate. During the simulation of multi-stage equilibria adsorption, gases and water interact on every equilibrium stage till establishing full equilibria, wherein the gases that just entered one stage are in equilibrium with the liquid phase of the previous stage, and the water that just entered one stage is in equilibrium with the gas phase of the previous stage as well. A kinetic model of hydrate growth for methane is introduced into the reaction adsorption so that this simulation is closer to the reality. As hydrogen doesn‘t react with water to form hydrate, the amount of hydrogen adsorption is calculated according to the proportion of methane and hydrogen adsorbed in the small cavities. Simultaneously, the plate column is employed as an example, where the gas-hydrate phase loads and hydrogen mole fraction are calculated by the multi-stage equilibria adsorption and reaction adsorption methods, and the results calculated by the two said methods are compared.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号