首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
离子液体固载化及其应用   总被引:12,自引:0,他引:12  
李雪辉  潘微平 《现代化工》2005,25(12):61-64
离子液体被认为是一类可取代传统有机溶剂的环境友好新型溶剂。离子液体的功能化可使其具有更广阔的应用空间;将功能化离子液体进行固载化,可以把离子液体和固相载体材料的优点结合在一起,应用于反应与催化时,从而更有利于产物和原料的分离、催化剂的循环使用,并且更经济。对近年来离子液体固载化的方法和应用进行了综述。  相似文献   

2.
就固载化离子液体作为催化剂或催化剂载体在不同反应类型的传统有机合成中的最新研究成果进行了综述,主要包括:偶联反应、加成反应、缩合反应、环化反应和还原反应.  相似文献   

3.
崔露丹  马磊 《浙江化工》2012,43(10):12-14,20
制备了活性炭固载溴化1-(2-胺乙基氢溴酸)-3-甲基咪唑翁盐离子液体催化剂,并用TG和XPS对催化剂进行了表征。将该催化剂首次用于Knoevenagel缩合反应,结果表明活性炭固载离子液体催化剂具有良好的催化活性和稳定性,同时克服了均相催化剂难以分离的不足。  相似文献   

4.
近年来,集均相和非均相材料的优点于一身的固载化离子液体一直是化学家们研究的重点之一.本文概述了固载化离子液体制备方法的研究进展.  相似文献   

5.
简要介绍了近年来离子液体固载化的载体,主要包含分子筛、离子交换树脂、氧化物、碳材料、金属有机骨架材料、石墨烯及其他类载体等;并对固载化离子液体在催化合成、萃取分离、气体吸附和转化、脱硫、废水处理、电化学及生物柴油等领域的应用做了概述,指出了其存在的问题。分析了固载化离子液体的未来发展方向,开发和研制具有低成本和重复利用率高的固载化离子液体成为其研究的关键;除此之外,可先形成聚离子液体后再进行修饰固载也是改善其综合性能、扩大应用范围的方法。  相似文献   

6.
固载化离子液体兼具载体材料高比表面积与离子液体的高催化活性等优点,不仅提升了离子液体的利用率,大幅度降低了离子液体的用量,而且可以显著提高离子液体在酯化反应中的催化活性。本文主要综述了固载化离子液体在催化酯化反应方面的研究进展,分别介绍了以硅胶、介孔分子筛、磁性介孔二氧化硅纳米材料以及高分子等为载体的固载化离子液体在酯化反应中的催化性能,简要分析了固载化离子液体催化酯化反应的机理与影响固载化离子液体催化活性的因素,并对固载化离子液体目前存在的问题以及今后的发展方向进行了总结,建立系统的载体与离子液体的构效关系,并对其性能进行长期的工业评测是今后的主要努力方向。  相似文献   

7.
综述了功能化离子液体和固载离子液体的合成及其应用于二氧化碳吸附方面的研究进展,展望了固载离子液体在吸收二氧化碳等温室气体中的良好应用前景,并分析了其在工业应用中存在的问题。  相似文献   

8.
离子液体是一种由阴离子和阳离子共同组成的有机熔融盐,其挥发性低、热稳定性和化学稳定性好、电化学窗口宽、结构可调变,近年来在诸多领域具有广泛的应用。但由于其黏度大不便于输送和操作,合成成本较高、回收利用率低等缺点,其发展受到了一定的限制。金属有机骨架 (MOFs) 材料是由金属离子/团簇和有机配体通过配位键自组装形成的具有分子内孔隙结构的有机-无机杂化材料。以MOFs为载体固载离子液体,不仅可以保留离子液体的优势,还可以赋予离子液体而很多新的特性。本文从MOFs固载离子液体的理论计算和实验应用研究出发,综述了MOFs固载离子液体的起源和固载方式,分析了MOFs和离子液体之间的兼容性、固载形式和相互作用,并对MOFs固载离子液体的瓶颈问题进行了分析,对发展方向进行了展望。  相似文献   

9.
以L-丙氨酸为原料采用溶胶-凝胶法制备了以SiO2为载体的固载化离子液体催化剂(IL-Ala/SiO2)。用红外光谱(FTIR)、热重(TG)、13C NMR、1H NMR、XRD和TEM等测试技术进行了表征,考察了催化剂在碳酸丙烯酯(PC)水解反应中的催化性能。结果表明,该催化剂在常压下能有效催化碳酸丙烯酯水解生成1,2-丙二醇(PG)。在催化剂含量为9%(质量分数)、温度140℃、反应时间3.5 h的条件下,PC的转化率大于99%,PG的选择性大于99%。经简单分离后催化剂可重复使用5次而活性变化不大。  相似文献   

10.
固载化离子液体催化碳酸乙烯酯水解制备乙二醇   总被引:4,自引:1,他引:3  
采用溶胶-凝胶法制备了以SiO2为载体的固载化离子液体催化剂,并将其首次用于催化碳酸乙烯酯(EC)水解制备乙二醇(EG)的反应. 结果表明,固载化碱性离子液体S-[bpim][HCO3]对碳酸乙烯酯水解制EG反应具有良好的催化活性和EG选择性,克服了非均相催化剂活性不高与均相催化剂难以分离的不足. 在催化剂浓度为0.0511 g/mL、温度140℃、压力0.4 MPa及EC/H2O=1:2(摩尔比)、反应时间3 h的条件下,EC转化率达99.7%,EG选择性为100%. 该催化剂在循环使用5次后,EC转化率无明显下降,EG的选择性始终接近100%.  相似文献   

11.
酸性离子液体催化合成三醋酸甘油酯   总被引:2,自引:0,他引:2  
合成了[HSO3-pmim]Cl、[HSO3-pmim][H2PO4]、[HSO3-pmim][BF4]和[HSO3-pmim] [HSO4]离子液体,用1H-NMR和FT-IR对离子液体的结构进行了确定。将几种酸功能化离子液体应用于三醋酸甘油酯的合成反应中,筛选出了一种催化效果好又可以重复使用的离子液体[HSO3-pmim][HSO4]。考察了催化剂用量、原料配比和反应时间对反应的影响,得到了较佳反应条件:n(甘油)∶n(醋酸)=1∶8,催化剂用量为醇酸总质量的5.8%,反应时间6 h,反应温度(80~90) ℃。对该功能化离子液体的重复使用性进行了考察,重复使用10次后,三醋酸甘油酯的收率仍大于90%。  相似文献   

12.
BACKGROUND: With the development of bio‐diesel, it has become an urgent task to make full use of glycerol, which is a by‐product of the production of bio‐diesel. Glycerol triacetate (GTA) is one of the important derivatives of glycerol and can be used in many fields. Usually it is prepared industrially in the presence of mineral acidic catalysts. The shortcomings of such a process include serious environmental issues, complicated technique and no recyclability of catalyst. Recently, it was reported that many acidic functionalized ionic liquids (FILs) could be synthesized and used in esterifications with excellent catalytic performance. Hence, the esterification of glycerol with acetic acid to produce GTA was investigated using acidic FILs as catalyst. RESULTS: The results indicated that [HSO3‐pmim][HSO4] exhibited promising catalytic performance. Using [HSO3‐pmim][HSO4] as catalyst, the yield of GTA was above 95%. The catalyst was utilized ten times and the GTA yield remained above 91%. CONCLUSION: The good catalytic performance and reusability of this FIL may contribute to the development of an environmentally friendly strategy for the synthesis of GTA. Copyright © 2009 Society of Chemical Industry  相似文献   

13.
磺酸功能化离子液体催化甘油与甲醇醚化反应   总被引:2,自引:1,他引:1       下载免费PDF全文
考察了[HSO3-bmim]CF3SO3、[HSO3-bmim]P-TSA、[HSO3-bmim]HSO4和[HSO3-bmim]H2PO4四种磺酸功能化离子液体对甘油与甲醇醚化反应的影响。结果表明,离子液体的催化性能与其酸强度相关联,[HSO3-bmim]CF3SO3离子液体的酸强度最强,其催化性能也最好。以[HSO3-bmim]CF3SO3为催化剂,在w([HSO3-bmim]CF3SO3)/w(甘油)=0.5:1(质量比)、n(甲醇)/n(甘油)=8:1(摩尔比)、反应温度190℃、反应时间8 h时,甘油的转化率为84.5%,单甲基甘油醚的选择性为41.4%,二甲基甘油醚和三甲基甘油醚的联合选择性为34.1%。在此基础上,提出了离子液体[HSO3-bmim]CF3SO3催化甘油与甲醇醚化反应的反应机理。  相似文献   

14.
酸功能化离子液体催化合成三乙酸甘油酯   总被引:1,自引:0,他引:1  
合成了[HSO3-pmim]Cl、[HSO3-pmim][BF4]、[Hpyro][HSO4]和[HSO3-pmim][PTSA]离子液体,用1H-NMR和FT-IR对离子液体的结构进行了确定。将这几种酸功能化离子液体应用于三乙酸甘油酯的合成反应中,筛选出了一种催化效果好、可重复使用的离子液体[HSO3-pmim][PTSA]。考察了催化剂用量、原料配比、反应时间和反应温度对反应结果的影响。得到了较佳反应条件:即n(甘油)︰n(乙酸)=1︰8,催化剂用量为醇酸总质量的10.5%,反应时间6 h,反应温度120℃。并对离子液体的重复使用性进行了考察,重复使用7次后,三乙酸甘油酯的收率仍大于90%。  相似文献   

15.
采用两步法合成离子液体[BMIM]HSO4,并采用浸渍法制备了[BMIM]HSO4/Al2O3固载型离子液体催化剂,用TG-DTG、BET、SEM等方法对催化剂进行表征。在常压连续流动的固定床反应器中,考察甘油制备丙烯醛的工艺条件,重点考察了反应温度、离子液体的负载量、体积空速对反应的影响及催化剂的稳定性。结果表明,较优条件为:当催化剂为[BMIM]HSO4/Al2O3,负载量为40%、反应温度为300℃、体积空速为6 h-1时,丙烯醛的选择性可达90.22%,甘油的转化率为100%,且催化剂在使用100 h后仍保持75%的收率。  相似文献   

16.
SBA-15固载酸性离子液体催化酯化反应性能   总被引:1,自引:0,他引:1       下载免费PDF全文
为了减少离子液体用量及解决催化剂分离问题,采用键合法制备了以SBA-15为载体的固载化离子液体催化剂[C3SO3HCP]HSO4/SBA-15,通过FT-IR、TG、XRD、BET和TEM分析了催化剂的结构和稳定性。并将其应用于催化丁二酸酐和乙醇的酯化反应。结果表明:[C3SO3HCP]HSO4被成功固定在SBA-15上,且具有较高的热稳定性和催化活性,克服了非均相催化剂活性不高与均相催化剂难以分离的不足。在催化剂用量为反应物总质量的5%、n(C4H4O3):n(C2H5OH)=1:3,反应温度80℃;反应时间4 h、带水剂用量为反应物总质量的30%的条件下,酯收率达93.7%,且该催化剂循环使用8次后,仍具有较高的催化活性。此外,还考察了以[C3SO3HCP]HSO4/SBA-15为催化剂催化合成系列酯也获得了较高的酯收率,且易于与产物酯分离。  相似文献   

17.
MCM‐41‐supported Fenton‐like ionic liquid catalysts were synthesized by the grafting method and applied in the removal of sulfur compounds in model oil. The structure and property of the catalysts were characterized by Fourier transform infrared spectra, X‐ray diffraction, diffuse reflectance spectra, transmission electron microscopy, thermogravimetric and differential scanning calorimetry, and N2 adsorption‐desorption. Results suggested that Fenton‐like ionic liquid was supported on mesoporous material MCM‐41. Different desulfurization systems were studied. The results indicated that at room‐temperature (30°C) for 1 h, MCM‐41‐supported Fenton‐like ionic liquid in extraction combined with catalytic oxidative desulfurization (ECODS) system showed a high catalytic activity with H2O2 as the oxidant, and [Omim]BF4 as the extractant. Different factors, such as temperature, the amount of H2O2, solvent, and different sulfur‐containing compounds for sulfur removal were investigated. Through the gas chromatography‐mass spectrometer (GC‐MS) analysis, dibenzothoiphene sulfone was proved to be the only product of dibenzothiophene oxidizing reaction. Furthermore, the process of ECODS was confirmed by GC‐MS results. © 2013 American Institute of Chemical Engineers AIChE J, 59: 4696–4704, 2013  相似文献   

18.
合成了由吡啶、N-甲基咪唑、N-甲基-2-吡咯烷酮提供有机阳离子, 磷钨酸、对甲苯磺酸提供阴离子的6种离子液体。使用NMR、FT-IR和TG对离子液体表征, 并考察它们催化甘油与月桂酸酯化的催化效果。结果表明, 这些离子液体都具有较好的热稳定性, 以1-(丁基-4-磺酸基)-3-甲基咪唑磷钨酸盐离子液体的热稳定性最好。在最佳条件使用离子液体催化甘油与月桂酸反应时, 阴离子的种类对月桂酸的转化率影响较大, 以对甲苯磺酸为阴离子的离子液体催化反应时, 月桂酸转化率较以磷钨酸为阴离子的离子液体的高;1-(丁基-4-磺酸基)-3-甲基咪唑对甲苯磺酸盐离子液体做催化剂时甘油单月桂酸酯的产率最高。催化剂重复使用性方面, 离子液体重复使用5次催化活性没有明显变化。  相似文献   

19.
BACKGROUND: Glycerol has become readily available as a byproduct from the biodiesel industry. High functionality and relatively low price make it a potential building block to produce value‐added derivatives such as acrolein. RESULTS: Dehydration of glycerol to acrolein was performed over several silica supported Brønsted acidic ionic liquids as catalysts. All the catalysts prepared were active for the synthesis of acrolein (conversion of glycerol was observed in the range 35–90% with selectivity to acrolein in the range 29–58%). CONCLUSIONS: Catalyst prepared from triphenyl (3‐sulfopropyl) phosphonium 4‐methylbenzenesulfonate gave good activity and selectivity at 4 h reaction time. The conversion of glycerol decreased with increase in glycerol concentration. Higher temperature (325 °C) resulted in significantly lower conversion as well as selectivity to acrolein. With the use of two additional traps cooled to ? 7 °C, the selectivity to acrolein increased significantly for good catalysts. Copyright © 2010 Society of Chemical Industry  相似文献   

20.
负载型离子液体催化剂具有高催化活性、易于分离和环境友好型等特点。综述不同种类负载型离子液体催化剂在不同催化反应中的应用,并展望负载型离子液体催化剂在催化领域的发展方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号