首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
孙泽宇  李传锋  阎奔 《电子学报》2020,48(4):723-733
为了提高传感网中数据重构精度以及降低不可靠链路丢包对压缩感知(Compressive Sensing,CS) 数据收集的影响,本文提出了一种基于压缩感知丢包匹配数据收集算法(Packet Loss Matching Data Gathering Algorithm Based on Compressive Sensing,CS-MDGA).本文算法通过压缩感知技术构建了全网数据间的"关联效应",并设计了基于丢包匹配的稀疏观测矩阵(Sparse Observation Matrix Based on Packet Loss Matching,SPLM),证明了该观测矩阵概率趋近于"1"时,满足的等距约束条件(Restricted Isometry Property,RIP),完成了节点间多路径路由数据的可靠交付.仿真实验结果表明,本文算法在链路丢包率为60%情况下,相对重构误差仍小于5%,验证了本文算法不仅具有较高的重构精度,而且还可以有效缓解不可靠链路丢包对CS数据收集的影响.  相似文献   

2.
The unreliable links and packet losing are ubiquitous in WSN.The performance of data collection algorithm based on compressive sensing is sensitive to packet losing.Firstly,the relationship between packet loss rate and CS-based reconstruction precision was analyzed,and the sparsest block measurement (SBM) matrix was formulated to keep the data gathering consumption smallest and make sure the low-rank property of measurements.Then,combined with the matrix completion (MC) and compressive sensing (CS),the CS data gathering algorithm based on sparsest block measurement matrix (CS-SBM) algorithm was proposed.CS-SBM gathered data in a period and recovered the loss data based on MC to weaken the impact of packet loss on data gathering.CS-SBM reconstructed data based on CS to reduce measurement number and energy consumption and prolong the network lifetime.Simulation analysis indicates that the proposed algorithm reconstruct the whole data with high-accuracy under 50% packet loss rate,resisting unreliable links effectively.  相似文献   

3.
In resource-limited wireless sensor networks,links with poor quality hinder its large-scale applications seriously.Thanks to the inherent sparse property of signals in WSN,the framework of sparse signal transmission based on double process of compressive sensing was proposed,providing an insight into a new way of real-time,accurate and energy-efficient sparse signal transmission.Firstly,the random packet loss during transmission under lossy wireless links was modeled as a linear dimension-reduced measurement process of CS (a passive process of CS).Then,considering that a large packet was often adopted in WSN for higher transmission efficiency,a random linear dimension-reduced projection (a simple source coding operation) was employed at the sender node (an active process of CS) to prevent block data loss.Now,the raw signal could be recovered from the lossy data at the receiver node using CS reconstruction algorithms.Furtherly,according to the theory of CS reconstruction and the formula of packet reception rate in wireless communication,the minimum compression ratio and the maximum packet length allowed were obtained.Extensive simulations demonstrate that the reliability of data transmission and its accuracy,the data transmission volume,the transmission delay and energy consumption could be greatly optimized by means of proposed method.  相似文献   

4.
The sparse nature of location finding in the spatial domain makes it possible to exploit the Compressive Sensing (CS) theory for wireless location. CS-based location algorithm can largely reduce the number of online measurements while achieving a high level of localization accuracy, which makes the CS-based solution very attractive for indoor positioning. However, CS theory offers exact deterministic recovery of the sparse or compressible signals under two basic restriction conditions of sparsity and incoherence. In order to achieve a good recovery performance of sparse signals, CS-based solution needs to construct an efficient CS model. The model must satisfy the practical application requirements as well as following theoretical restrictions. In this paper, we propose two novel CS-based location solutions based on two different points of view: the CS-based algorithm with raising-dimension pre-processing and the CS-based algorithm with Minor Component Analysis (MCA). Analytical studies and simulations indicate that the proposed novel schemes achieve much higher localization accuracy.  相似文献   

5.
Real time digital audio delivery over Wireless Local Area Networks (WLANs) represents an attractive, flexible and cost effective framework for realizing high-quality, multichannel home audio applications. However, the unreliable nature of WLANs IP link frequently imposes significant playback quality degradation, due to delay or permanent loss of a number of transmitted digital audio packets. In this paper, a novel packet error concealment technique is presented, based on the spectral reconstruction of the statistical equivalent of a previously successfully received audio data packet. It is shown that the proposed data reconstruction scheme outperforms previously published error concealment strategies, in both terms of objective and perceptual criteria.  相似文献   

6.
测量矩阵设计是应用压缩感知理论解决实际问题的关键。该文针对无线传感器网络压缩数据收集问题设计了一种概率稀疏随机矩阵。该矩阵可在减少参与投影值计算节点个数的同时,让参与投影值计算的节点分布集中化,从而降低数据收集的通信能耗。在此基础上,为提高网络数据重构精度,又提出一种适用于概率稀疏随机矩阵优化的测量矩阵优化算法。仿真实验结果表明,与稀疏随机矩阵和稀疏Toeplitz测量矩阵相比,采用优化的概率稀疏随机矩阵作为压缩数据收集的测量矩阵可显著降低通信能耗,且重构误差更小。  相似文献   

7.
Data gathering is a major function of many applications in wireless sensor networks. The most important issue in designing a data gathering algorithm is how to save energy of sensor nodes while meeting the requirements of special applications or users. Wireless sensor networks are characterized by centralized data gathering, multi-hop communication and many to one traffic pattern. These three characteristics can lead to severe packet collision, network congestion and packet loss, and even result in hot-spots of energy consumption thus causing premature death of sensor nodes and entire network. In this paper, we propose a load balance data gathering algorithm that classifies sensor nodes into different layers according to their distance to sink node and furthermore, divides the sense zone into several clusters. Routing trees are established between sensor node and sink depending on the energy metric and communication cost. For saving energy consumption, the target of data aggregation scheme is adopted as well. Analysis and simulation results show that the algorithm we proposed provides more uniform energy consumption among sensor nodes and can prolong the lifetime of sensor networks.  相似文献   

8.
Compressive sensing (CS) has attracted much attention in wireless communications due to its ability to attain acceptable channel estimates with a small number of pilots. To further reduce the pilot overhead in multi-input multi-output (MIMO) systems, CS-based channel estimation may employ superimposed pilot pattern. Previous works on superimposed pilot design generally allocate pilots randomly, which may give ill-posed measurement matrices. In this paper, we focus on deterministic pilot allocation for large-scale MIMO systems with superimposed pilot pattern to improve the performance of structured CS based channel estimation. By exploiting the spatial common sparsity and the error bound of block sparse reconstruction, a new criterion is firstly proposed to optimize the pilots in the Hadamard space. The proposed criterion makes full use of the information about the principal angles across the blocks in the measurement matrix, which can enhance the average recovery ability and exclude the worst pilots simultaneously. Secondly, a genetic algorithm is proposed to minimize the merit factor of the proposed criterion efficiently. Simulation results show that the proposed optimized pilots outperform the random pilots in terms of mean-squared error by about 3 dB. Moreover, the proposed criterion is more likely to achieve better measurement matrices than the traditional criteria.  相似文献   

9.
The arbitrary distribution of sensor nodes and irregularity of the routing path led to unordered data, which is complex to handle in a wireless sensor network (WSN). To increase WSN lifetime, data aggregation models are developed to minimize energy consumption or ease the computational burden of nodes. The compressive sensing (CS) provides a new technique for prolonging the WSN lifetime. A hybrid optimized model is devised for cluster head (CH) selection and CS-based data aggregation in WSN. The method aids to balance the energy amidst different nodes and elevated the lifetime of the network. The hybrid golden circle inspired optimization (HGCIO) is considered for cluster head (CH) selection, which aids in selecting the CH. The CH selection is done based on fitness functions like distance, energy, link quality, and delay. The routing is implemented with HGCIO to transmit the data projections using the CH to sink and evenly disperse the energy amidst various nodes. After that, compressive sensing is implemented with the Bayesian linear model. The convolutional neural network-long short term memory (CNN-LSTM) is employed for the data aggregation process. The proposed HGCIO-based CNN-LSTM provided the finest efficiency with a delay of 0.156 s, an energy of 0.353 J, a prediction error of 0.044, and a packet delivery ratio (PDR) of 76.309%.  相似文献   

10.
OBS中基于优先级与负载均衡的偏射路由算法   总被引:1,自引:1,他引:0       下载免费PDF全文
为了解决偏射算法在偏射控制七的问题,提出了一种基于优先级与负载均衡的偏射路由算法.当冲突发生时,分割优先级低的突发数据包;将冲突部分的突发包偏射到空闲的链路上,并在空闲的链路中选择若干条"当前最大剩余跳数小于源-目的节点的最大跳数"的路由作为候选路由;最后,在这些候选路由中选择一条可以使网络中各链路使用波长数的统计方差...  相似文献   

11.
We propose a modified motion estimation algorithm that is adequate for error localization and temporal error concealment in transmitting videos over unreliable channels. In order to achieve good error concealment performance, the proposed algorithm implicitly imposes spatial correlations on motion vectors by extending the block size and overlapping blocks in motion estimation. Thereby, the obtained motion vectors can be used to improve error concealment performance while keeping the encoding efficiency with negligible overhead. In addition, the proposed motion estimation can provide a new error detection measure so that we can maximally utilize uncorrupted data rather than simply discarding all data in a defected packet. Simulation results show that the proposed motion estimation scheme provides significant improvements in error concealment performance over the existing schemes and improves the bit utility over a wide range of error conditions.  相似文献   

12.
线阵合成孔径雷达(Linear Array Synthetic Aperture Radar, LASAR)3维成像技术是一种具有重要潜在应用价值的新体制成像雷达,压缩感知稀疏重构是近几年实现LASAR高分辨3维成像的热点研究之一。但相对于传统2维SAR,受线阵稀疏分布及阵列-平台2维联动,压缩感知LASAR成像面临回波数据欠采样、多维度高阶相位误差等问题,传统SAR自聚焦算法难以适用于压缩感知LASAR 3维稀疏自聚焦成像。为克服欠采样条件下多维度高阶相位误差对LASAR成像的影响,该文提出了一种基于半正定规划的压缩感知LASAR自聚焦成像算法。首先,结合压缩感知成像理论、图像最大锐度及最小均方误差准则,构造欠采样条件下稀疏目标的相位误差估计模型;其次,利用松弛半正定规划方法估计相位误差;最后,利用迭代逼近方法提高相位误差估计精度,实现压缩感知LASAR高精度稀疏自聚焦成像。另外,通过主散射目标区域提取,仅采用主散射区域进行相位误差估计,进一步提高自聚焦算法运算效率。仿真数据和实测数据验证了该文算法的有效性。   相似文献   

13.
In recent years, energy consumption and data gathering is a foremost concern in many applications of wireless sensor networks (WSNs). The major issue in WSNs is effective utilization of the resource as energy and bandwidth with a large gathering of data from the monitoring and control applications. This paper proposes novel Bandwidth Efficient Cluster based Packet Aggregation algorithm for heterogeneous WSNs. It combines the idea of variable packet generation rate of each node with random data. The nodes are randomly distributed with different energy level and are equal in numbers. It uses the perfectly compressible aggregation function at cluster head based on the correlation of packets and data generated by each node. Compare to state-of-the-art solutions, the algorithm shows 4.43 % energy savings with reduced packet delivery ratio (62.62 %) at the sink. It shows better bandwidth utilization in packet aggregation than data aggregation.  相似文献   

14.
吕斌  杨震  林畅 《信号处理》2014,30(12):1502-1509
认知无线电系统中,压缩感知理论已广泛运用于宽带频谱检测。但是,压缩感知中的重构问题造成频谱检测算法计算复杂度高,且在低信噪比下检测效果不佳。本文提出了采用支持向量机的宽带频谱感知算法,该算法利用支持向量机建立频谱检测分类器,代替信号的重构与检测过程。根据系统对实时性的要求,分别设计了多级二元分类器感知算法和单级多元分类器感知算法。前者适用于分级数有限且实时性要求不高的场景,后者可大幅降低系统的算法复杂度,降低感知时间,适用于实时检测系统。仿真结果表明,与基于重构的能量检测算法相比,本文提出的两种算法均可以有效改善系统对噪声的鲁棒性,提高在较小信噪比下的检测性能。   相似文献   

15.
提出了一种基于压缩感知(CS,compressive sensing)理论的不连续子载波正交频分复用(NC-OFDM,non-contiguous orthogonal frequency division multiplexing)系统信道估计新方法,全面研究了认知无线电NC-OFDM系统CS信道估计的理论框架、导频图案的设计、信道估计算法,并依据CS测量矩阵设计理论提出了测量矩阵互相关最小化的导频图案优化准则。仿真结果表明,同已有的NC-OFDM系统信道估计方法相比,CS信道估计能够在多种禁用子载波场景下,使用较少导频获得很好的信道估计性能。  相似文献   

16.
Providing reliable transmission for real-time traffic in wireless cellular networks is a great challenge due to the unreliable wireless links. This paper concentrates on the resource allocation problem aiming to improve the real-time throughput. First, the resource allocation problem is formulated as a Markov Decision Process and thus the optimal resource allocation policy could be obtained by adopting the value iteration algorithm. Considering the high time complexity of the optimal algorithm, we further propose an approximate algorithm which decomposes the resource allocation problem into two subproblems, namely link scheduling problem and packet scheduling problem. By this method, the unreliable wireless links are only constrained in the link scheduling problem, and we can focus on the real-time requirement of traffic in packet scheduling problem. For the link scheduling problem, we propose the maxRel algorithm to maximize the long-term network reliability, and we theoretically prove that the maxRel algorithm is optimal in scenarios with dynamic link reliabilities. The Least Laxity First algorithm is adopted for the packet scheduling problem. Extensive simulation results show that the proposed approximate resource allocation algorithm makes remarkable improvement in terms of time complexity, packet loss rate and delay.  相似文献   

17.
汪丽青  杨龙祥 《电讯技术》2019,59(8):880-884
在大规模多输入多输出(Multiple-Input Multiple-Output,MIMO)系统中,基于压缩感知技术(Compressed Sensing,CS)开发高效的信道状态信息(Channel State Information,CSI) 反馈方案是现在研究的热点。针对现有的基于CS的信道反馈重构算法——正交匹配追踪(Orthogonal Matching Pursuit,OMP)算法存在重构时间长、数据量大可能会无法适用的不足,提出了一种改进的OMP算法,即广义正交匹配追踪(Generalized OMP,GOMP)算法对CSI进行高效重构。仿真结果表明,GOMP算法在重构精确度上高于OMP算法,特别是在较低的压缩比下优势更为突出;而且由于迭代次数减少,需要的重构时间也显著减少。  相似文献   

18.
The dynamic nature of mobile nodes of ad hoc network is mostly affected by security problems which reduce data forwarding rate in multimedia sources. Due to the rapid growth of wireless applications, the different multitalented routing protocols are proposed in recent years. But the recent protocols are not efficient for multimedia applications, till now, specific security aware routing protocols are not proposed for multimedia data transfers. In this paper, we proposed trust enhanced cluster based multipath routing (TECM) algorithm. We use energy efficient PSO algorithm used to create cluster formation and cluster head, super cluster head are selected from trust values, which compute form proposed TECM algorithm. The multi trust factors are used for trust computation, such as frame/packet loss ratio, frame/packet forward energy, frame/packet receiving energy, routing overhead, received signal strength, frame/packet forward rate, average forward delay and protocol deviation flag. We then combine proposed TECM algorithm with standard multipath OLSR protocol (TECM-OLSR) to analyze the performance of proposed algorithm. The simulated results show that proposed TECM-OLSR protocol is very effective in terms of loss and delivery rate, delay, routing overhead and network lifetime compare to FPNT-OLSR.  相似文献   

19.
基于压缩感知和单像素成像的基本原理,设计了一种用于图像超分辨率重建的新型深度卷积神经网络架构.这种单像素超分辨率成像算法成功地将深度学习图像超分辨率重建技术与压缩感知单像素成像技术相结合,从而发展出一种全新的深度学习单像素成像优化方法.与传统的常规压缩感知图像重构算法相比,该算法有效提升了图像超分辨率重建精度和单像素成像质量.通过图像重建的仿真实验和单像素相机的成像实验验证,结果表明这种基于深度学习的新型单像素相机成像方式具有良好的性能表现.  相似文献   

20.
Block loss and propagation error due to cell loss or missing packet information during the transmission over lossy networks can cause severe degradation of block and predictive-based video coding. Herein, new fast spatial and temporal methods are presented for block loss recovery. In the spatial algorithm, missing block recovery and edge extention are performed by pixel replacement based on range constraints imposed by surrounding neighborhood edge information and structure. In the temporal algorithm, an adaptive temporal correlation method is proposed for motion vector (MV) recovery. Parameters for the temporal correlation measurement are adaptively changed in accordance to surrounding edge information of a missing macroblock (MB). The temporal technique utilizes pixels in the reference frame as well as surrounding pixels of the lost block. Spatial motion compensation is applied after MV recovery when the reference frame does not have sufficient information for lost MB restoration. Simulations demonstrate that the proposed algorithms recover image information reliably using both spatial and temporal restoration. We compare the proposed algorithm with other procedures with consistently favorable results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号