首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 453 毫秒
1.
王辉  杜官本 《胶体与聚合物》2012,30(4):174-175,182
合成了三聚氰胺-尿素-甲醛(MUF)共缩聚树脂,考察了不同施胶量、固化剂用量及木材种类对胶合木性能的影响。结果表明,MUF共缩聚树脂用量为300g/m2,双面施胶,固化剂用量在1~2%时,生产的胶合木性能最优。  相似文献   

2.
王辉  杜官本 《粘接》2012,(1):43-46
以三聚氰胺、尿素、甲醛为主要原料,合成了三聚氰胺-尿素-甲醛(MUF)共缩聚树脂。考查了不同合成方法对MUF共缩聚树脂性能的影响。结果表明,不同合成工艺对树脂的甲醛含量以及稳定性有重要影响。DSC分析发现,在相同固化条件下,以工艺2合成的MUF树脂固化速度更快。用MUF制备的胶合木的性能,均可满足日本JAS中的规定。  相似文献   

3.
王辉  杜官本  李琴 《粘接》2012,(4):45-48
借助DSC分析技术,探讨了三聚氰胺-尿素-甲醛(MUF)共缩聚树脂在不同条件下的固化行为。运用Kissinger方法进行了动力学分析,得到了其固化反应的动力学参数和活化能。结果表明,随着升温速率的增加,MUF固化反应的最高固化温度会向高温方向移动,其固化表观活化能为50.30kJ/mol,用外推法得到了其最高固化温度为97℃。而且,固化剂的加入大大降低了树脂固化表观活化能。  相似文献   

4.
《粘接》2016,(12)
选用碳酸丙烯酯作为固化剂,研究了碳酸丙烯酯加入量对苯酚-尿素-甲醛共缩聚树脂(PUF)固化性能的影响,考查了PUF树脂作为胶粘剂基料用于刨花板的制作情况。结果表明,加入一定量的碳酸丙烯酯后,PUF树脂的固化温度降低,固化时间缩短;碳酸丙烯酯的加入对PUF的固化和刨花板的生产效率有提高和促进作用。  相似文献   

5.
借助基质辅助激光解吸电离飞行时间质谱仪对三聚氰胺-尿素-甲醛(MUF)共缩聚树脂合成过程中结构的变化进行了分析,旨在为寻找合理的MUF树脂合成工艺提供理论依据。通过跟踪不同合成阶段树脂结构的形成及变化发现:在弱碱性条件下,共缩聚主要以稳定的亚甲基桥键相连;而在弱酸性条件下,共缩聚以亚甲基醚键为主,直至反应结束仍然存在。在反应过程中加入三聚氰胺,会诱导已经形成的亚甲基醚键结构重新排列,利于生成更为稳定的亚甲基桥键。反应后期补加尿素,很有可能诱导部分结构的重新排列。  相似文献   

6.
以三聚氰胺、尿素和甲醛为主要原料,制备了MUF(三聚氰胺-尿素-甲醛共缩聚树脂)。三聚氰胺的引入可赋予MUF相对较优的性能;通过考察不同条件下MUF的热分解过程,可综合评价其耐热性能。研究结果表明:在N2气氛中,无固化剂时液态MUF的600℃残炭率高于固态MUF;当m(MUF)∶m(氯化铵)=100∶1时,液态MUF和固态MUF的热分解过程不尽相同,储存时间对液态MUF的耐热性影响不大,但其最终残炭率随储存时间延长而略有增加。  相似文献   

7.
《粘接》2017,(10)
以对甲苯磺酸处理过的单宁为改性剂,研究了不同添加阶段、不同添加量对集成材用三聚氰胺-尿素-甲醛(MUF)共缩聚树脂性能的影响,并借助红外光谱(FT-IR)和差式扫描量热(DSC)进行表征。结果表明,在"碱-酸-碱"工艺过程的一碱阶段添加12%处理单宁对MUF树脂进行改性的效果最佳,所制备树脂黏度低、游离甲醛含量不高,干状和湿状剪切强度均满足国家结构集成材用胶标准。FT-IR和DSC分析结果表明,酸性阶段加入单宁可能会阻碍缩聚反应进行,一碱阶段加入单宁合成的MUF具有较低的固化温度。  相似文献   

8.
为从根本上消除木材胶合制品的甲醛释放对环境和人体健康的危害及改善尿素-乙二醛(UG)树脂的性能,选择无毒、低挥发的乙二醛代替甲醛,与尿素、苯酚反应制备苯酚-尿素-乙二醛(PUG)共缩聚树脂木材胶黏剂。研究了在反应的不同阶段加入苯酚以及苯酚的加入量对树脂性能的影响,并通过傅里叶变换红外光谱法(FTIR)对树脂的结构进行了表征。结果表明:在所研究的合成条件下,PUG树脂的pH和状态受苯酚加入量和加入时间的影响不大,苯酚的加入量为尿素总量的10%为宜;树脂中主要含有氮氢(N—H)、氧氢(O—H)、羰基(C=O)、饱和碳氢(C—H)、醚键(C—O—C)及碳氮(C—N)键等主要官能团。  相似文献   

9.
通过在三聚氰胺-尿素-甲醛树脂(MUF)合成反应的不同阶段添加氧化木薯淀粉,制备得到了不同系列树脂,分别为MUF0、MUF1和MUF2,并对其基本性能及粘接强度进行了测试和分析。为了进一步了解氧化木薯淀粉对MUF树脂固化反应的影响,借助差示扫描量热分析仪(DSC)对树脂在不同升温速率条件下的固化特征参数及固化行为进行了表征。结果表明,在合成反应不同阶段加入氧化木薯淀粉,可有效提升树脂的粘接性能并降低树脂中的游离甲醛含量,特别是在树脂合成反应的第3阶段进行添加,效果更为显著。利用Kissinger方程对不同树脂的固化动力学参数进行分析,得到了树脂固化反应的表观活化能E a,表观频率因子A和反应级数n,并建立了固化反应动力学模型。在本试验条件下,树脂经过氧化木薯淀粉改性后,虽然固化所需活化能有不同程度的提高,但可形成更高的粘接强度。  相似文献   

10.
改性三聚氰胺-尿素-甲醛共缩聚树脂胶粘剂的合成   总被引:1,自引:0,他引:1  
通过三聚氰胺-尿素-甲醛(MUF)共缩聚树脂胶粘剂的合成,探讨了三聚氰胺的用量对该MUF树脂耐水性能的影响及其规律。实验结果表明,当w(三聚氰胺)=43%~65%时,该MUF树脂的湿强度从0.93 MPa增加到2.74 MPa,耐沸水性明显提高;但是,当w(三聚氰胺)>65%时,该MUF树脂的湿强度增长极其缓慢,其耐沸水性提高并不明显;通过引入复合改性剂和适量的水,可使该MUF树脂的游离甲醛含量降低50%、成本降低10%~15%、固含量基本不变、胶合强度和耐沸水性均有所提高且适用期良好。  相似文献   

11.
The variation of molecular mass distribution with the progress of the reaction was studied for the following: (i) sequential‐type melamine–urea–formaldehyde (MUF) resin formulations in which the sequence of addition of chemicals follows well‐defined species reactivity principles; (ii) a nonsequential MUF formulation in which simultaneous melamine and urea competition for formaldehyde yields a MF resin cocondensed with small amounts of urea. This resin became soaked with reacted and unreacted monomeric urea species. (iii) A PMUF resin, namely a MUF resin with a small proportion of phenol (7.8% by weight on melamine and urea) cocondensed with the main MUF fraction. All the formulations used were industrial resins formulations in current use. Development and variation of molecular mass fractions, from which performance and other useful resin parameters depend, have been found to depend on the type of resin formulation used for these type of aminoplastic resins. The two very different MUF resin formulations yielded different variations in molecular mass fractions during the progress of the reaction and during the so‐called ambient temperature “maturing” of the resin. The PMUF resin also showed both similar and different fractions present during manufacturing and during short term ageing at ambient temperature. While similarities in recurrent fractions and in trends are common to all the three different formulations, differences between them are also clearly observed. A major proportion of the reaction of some of the aminoplastic resins examined also occurs on ageing (i.e.“maturing” of the resin at ambient temperature), this appearing to be an essential phase of the resin preparation process. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4842–4855, 2006  相似文献   

12.
三聚氰胺添加方式对MUF胶粘剂性能的影响   总被引:1,自引:1,他引:0  
以三聚氰胺作为脲醛树脂(UF)的共聚改性剂制备MUF(三聚氰胺甲醛树脂)胶粘剂。探讨了三聚氰胺的添加方式对MUF胶粘剂性能的影响,同时对其固化特性、分子结构和耐热性等进行了分析。结果表明:三聚氰胺2次投料法可有效降低MUF胶粘剂的甲醛释放量,但其胶接强度也随之下降;同时,该MUF固化体系的外推固化温度、表观活化能和反应级数均有所增加,耐热性降低;另外,2次投料体系使MUF的相对分子质量降低、相对分子质量分布变宽。  相似文献   

13.
As a part of abating the formaldehyde emission (FE) of urea–formaldehyde (UF) resin, this study was conducted to investigate the effects of formaldehyde to urea (F/U) mole ratio on thermal curing behavior of UF resins and properties of PB bonded with them. UF resins synthesized at different F/U mole ratios (i.e., 1.6, 1.4, 1.2, and 1.0) were used for the manufacture of PB. Thermal curing behavior of these UF resins was characterized using differential scanning calorimetry (DSC). As the F/U mole ratio decreases, the gel time, onset and peak temperatures, and heat of reaction (ΔH) increased, while the activation energy (Ea) and rate constant (k) were decreased. The amount of free formaldehyde of UF resin and FE of PB prepared decreased in parallel with decreasing the F/U mole ratio. The internal bond strength, thickness swelling, and water absorption of PB was slightly deteriorated with decreasing the F/U mole ratio of UF resins used. These results indicated that as the F/U mole ratio decreased, the FE of PB was greatly reduced at the expense of the reactivity of UF resin and slight deterioration of performance of PB prepared. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 1787–1792, 2006  相似文献   

14.
The incorporation of the modified starch (MS) in urea‐formaldehyde resins at different stage of the synthesis was studied in this article. The synthesized resins were characterized by Fourier transform infrared spectroscopy, indicating that the ester bond can be introduced into the UF structure after the addition of MS. The curing reactions were examined with differential scanning calorimetry and it reveals that curing temperature of UF resin are slightly shifted to higher temperatures. To study the bonding strength and formaldehyde emission of the bonded plywood, the addition method and amount of MS are systematically investigated. The performance of the UF resins is remarkably improved by the addition of MS around 15% (weight percentage of the total resin) in the second stage. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40202.  相似文献   

15.
Melamine urea formaldehyde (MUF) thermosetting wood adhesives have poor performance at elevated temperatures and humid conditions. PolyFox PF-151N polymer was mixed at different loadings (0.05, 0.1, 0.5, and 1%) with MUF to improve properties, especially water resistance and bond strength. The physical properties of the optimized MUF/PolyFox PF-151N resins were measured. In order to evaluate the quality of optimized MUF/PolyFox PF-151N resins, particleboards were produced and physical and mechanical properties were investigated.

The results show that it is possible to add PolyFox PF-151N up to 0.1% to the MUF resin without altering the mechanical properties of the commercial MUF. The mechanical properties of the particleboard panels bonded with the optimal MUF/PolyFox PF-151N (99.9/0.1 by weight) resin were considerably increased as compared to the panels glued with neat MUF resin. The use of PolyFox significantly reduced 2-h and 24-h thickness swelling compared to the control panels.  相似文献   

16.
Effects of adding urea to the strand board core‐layer phenol–formaldehyde (PF) resin were investigated in conjunction with cure‐accelerating catalysts. Ten percent urea based on the liquid resin weight was added at the beginning, at three different middle stages of polymerization, and at the end of PF resin synthesis. No significant cocondensation between the urea and PF resin components occurred as identified by 13C NMR analyses, which corroborated well with the curing and strand board bonding performance test results. The various urea addition methods resulted in resins that slightly differ in the various tests due to the urea's temporary holding capacity of formaldehyde. The preferred method of urea addition was found to do it in the later part of PF resin synthesis for convenience, consistency, and slightly better overall performance. Some cure‐accelerating catalysts were shown to reduce the thickness swelling of strand boards. This study showed the usefulness of adding some urea to strand board core‐layer binder PF resins of replacing higher cost phenolic components with lower cost urea. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

17.
A series of UF resins and one MUF resin were studied by low‐resolution 1H‐NMR. The mobility of the resin during curing could be followed by measuring the spin‐spin relaxation time (T2) with curing time. The relative curing behavior was similar to that found by traditional gel time measurements. In addition, extra features in the T2 plots with curing time showed at what point the bulk of the condensation reactions took place. The speed of cure was also related to the chemical groups in the liquid resin, and it was found that the linear methylol groups were mainly responsible for the curing speed of the resins. By studying the curing with different hardener levels and glue concentrations it was found that a UF resin is more sensitive to the glue mix concentration than an MUF resin. A cured resin was also studied after curing to investigate postcuring effects. Water seemed to play the biggest role in the postcure, with substantial amounts present immediately after cure, which decreased with curing time and aging. For the low mol ratio resins studied here further curing reactions did not seem to play a major role in the post curing phenomenon. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 754–765, 2000  相似文献   

18.
Nine formulations were selected for evaluating the effect of different curing methods on pH and alkalinity or acidity of various structural wood adhesives. These included four phenol–formaldehyde (PF) resins with high pH, one phenol–resorcinol–formaldehyde (PRF) resin with intermediate pH, two melamine–urea–formaldehyde (MUF) resins, and two melamine–formaldehyde (MF) resins with low pH. The four curing methods used in the study were: (1) curing at 102–105°C for 1 h (based on CSA O112.6‐1977), (2) four‐hour curing at 66°C followed by 1‐hour curing at 150°C (based on ASTM D1583‐01), (3) curing at room temperature overnight (based on ASTM D 1583‐01), and (4) cured adhesive squeezed out from glue lines of bonded shear block samples. The effect of the different methods on pH and alkalinity/acidity of the cured adhesive depended strongly on the individual adhesives. For the PF, the alkalinity was different for the different formulations in the liquid form, while in the cured form, the difference in the alkalinity depended on the curing method used. The MF and the MUF were the adhesives most affected by the method used. In particular, the MUF showed much higher cured film pH values when cured by method 2 compared to the other three methods, while both the cured MF and MUF exhibited quite variable acidity values when cured with the different methods. The PRF showed reasonably uniform cured film pH but varying acidity values when cured with the different methods. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号