首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
锂离子电池正极材料LiNi0.8Co0.2O2的合成及性能研究   总被引:1,自引:0,他引:1  
以硝酸盐和淀粉为原料,采用溶胶-凝胶方法合成LiNi0.8Co0.2O2锂离子电池正极材料,利用X射线衍射(XRD)、扫描电镜(SEM)和电化学测试等方法对合成材料的结构、形貌以及电化学性能进行表征。结果表明,合成材料为单一晶相的α-NaFeO2型层状结构,颗粒小且分布均匀,在电压为2.75~4.50 V (vs. Li+/Li) 范围内,以0.2 mA/cm2电流密度下经恒电流充放电测试,其首次放电比容量为183.1 mAh/g,经过50周充放电循环后放电比容量为171.3 mAh/g,表现出较大的初始放电比容量和良好的循环性能。  相似文献   

2.
The comparative study of LiNi0.8Co0.2O2 and LiNi0.75Al0.25O2 was carried out by X-ray diffraction(XRD) and electrochemical methods.The results show that Co and Al doping suppress the phase transition during charge-discharge.The experiments indicate that LiNi0.75Al0.25O2 has the better cycle-ability and over-charge resistance comparing with LiNi0.8Co0.2O2,The interfacial behavior was studied by use of electrochemical impedance spectroscopy(EIS).The results show that LiNi0.75Al0.25O2 has a slightly larger polarization character than LiNi0.8Co0.2O2.  相似文献   

3.
Alumina coated LiNi1/3Mn1/3Co1/3O2 particles were obtained by a simple method of solid state reaction at room temperature. The reaction mechanism of solid state reaction at room temperature was investigated. The structure and morphology of the coating materials were investigated by XRD, SEM and TEM. The electrochemical performances of uncoated and Al2O3-coated LiNi1/3Co1/3Mn1/3O2 cathode materials were studied within a voltage window of 3.00-4.35 V at current density of 30 mA/g. SEM, TEM and EDS analytical results indicate that the surface of LiNi1/3Mn1/3Co1/3O2 particles is coated with very fine Al2O3 composite, which leads to the improved cycle ability though a slight decrease in the first discharge capacity is observed. It is proposed that surface treatment by solid state reaction at room temperature is a simple and effective method to improve the cycle performance of LiNi1/3Co1/3Mn1/3O2 particles.  相似文献   

4.
采用草酸共沉淀法合成了锂离子正极材料LiNi0.4Mn0.4Co0.2O2。用XRD、SEM和充放电实验对合成产物的结构、形貌和电化学性能进行了表征;用DSC对合成产物在不同充电状态下的热稳定性进行了研究。结果表明,采用草酸共沉淀法合成的正极材料LiNi0.4Mn0.4Co0.2O2具有α-NaFeO2型层状结构,阳离子有序度高,粒度均匀适中,电化学性能良好,首次放电比容量达到158.7 mAh/g,30次循环后放电比容量还有144.8 mAh/g;过充电状态下具有良好的热稳定性。  相似文献   

5.
采用共沉淀法对LiNi0.8Co0.2O2进行Mn元素的掺杂改性,考察不同掺杂量对LiNi0.8Co0.2O2材料的结构和电化学性能的影响,并对LiNi0.8-xMnxCo0.2O2(0≤x≤3)进行X射线衍射和扫描电镜分析以及循环伏安测试。充放电测试结果显示:未掺杂Mn的LiNi0.8Co0.2O2材料的初始放电比容量为164.32 mAh/g,50次循环以后为161.86 mAh/g。经掺Mn后LiNi0.8Co0.2O2材料的初始放电比容量为163.13 mAh/g,并且50次循环以后还能保持在162.33 mAh/g左右,效率达到99%以上。研究表明,掺Mn后的LiNi0.8Co0.2O2材料具有更加稳定的层状结构,并且其循环性能得到很大程度的提高。  相似文献   

6.
The layered LiNi0.6Co0.2-xMn0.2MgxO2 (x=0.00,0.03,0.05,0.07) cathode materials were prepared by a co-precipitation method.The properties of the Mg-doped LiNi0.6Co0.2Mn0.2O2 were investigated by X-ray diffraction (XRD),scanning electron microscopy (SEM),and electrochemical measurements.XRD studies showed that the Mg-doped LiNi0.6Co0.2Mn0.2O2 had the same layered structure as the undoped LiNi0.6Co0.2Mn0.2O2.The SEM images exhibited that the particle size of Mg-doped LiNi0.6Co0.2Mn0.2O2 was finer than that of ...  相似文献   

7.
LiNi0. 45 Co0. 10 Mn0. 4sO2 was synthesized from Li2CO3 and a triple oxide of nickel, cobalt and manganese at 950 ℃ in air. The structures and characteristics of LiNi0. 45 Co0.10 Mn0. 45 O2, LiCoO2 and LiMn2 O4 were investigated by XRD, SEM and electrochemical measurements. The results show that LiNi0.4s Co0.10 Mn0. 45 O2 has a layered structure with hexagonal lattice. The commercial LicoO2 has sphere-like appearance and smooth surfaces, while the LiMn2 O4 and LiNi0.45 Co0. 10 Mn0. 45 O2 consist of cornered and uneven particles. LiNi0. 45 Co0.10 Mn0. 45 O2 has a large disLiMn2 O4 and LiCoO2, respectively. LiCoO2 and LiMn2 O4 have higher discharge voltage and better rate-capability than LiNi0. 45Co0.10 Mn0. 45 O2. All the three cathodes have excellent cycling performance with capacity retention of above 89.3 % at the 250th cycle. Batteries with LiMn2 O4 or LiNi0.45 Co0.10 Mn0. 45 O2 cathodes show better safety performance under abusive conditions than those with LiCoO2 cathodes.  相似文献   

8.
The commercialized lithium secondary cells need the electrode materials with high speeific capacity, lower pollution and lower price. Certain industrial materials ( NiSO_4, CoSO_4 , LiOH·H_2O)were used to synthesize Ni_(0.8)Co_(0.2)(OH)_2 of a stratified structure, when various synthesis conditions such as pH, reaction temperature et al. were controlled strictly. After LiOH·H_2O and Ni_(0.8)Co_(0.2) (OH)_2were calcinated in air atmosphere, LiNi_(0.8)Co_(0.2)O_2 positive electrode materials with good layered crystal structure was obtained. Tests showed that the optimal calcination temperature in air atmosphere was about at 720℃ and LiNi_(0.8)Co_(0.2)O_2 synthesized in the above conditions had good electrochemical properties and a low cost. The first specific: discharge capacity of the material was 186 mAh/g, and the specific discharge capacity was 175 mAh/g after 50 cycles at a 0.2C rate, between 3.0~4.2 V with a discharge deterioration ratio of 0.22% each cycle. Tests showed that LiNi_(0.8)Co_(0.2)O  相似文献   

9.
LiNi0.78 Co0.2 Al0.02O2 cathode materials were prepared with a novel co-precipitation method followed by heat-treating. The properties of the materials were characterized. XRD patterns showed that no secondary phase appeared and the hexagonal lattice parameter c of LiNi0.rsCoo.2AI~0202 was larger than that of LiNi0.8Co0.2O2. The SEM images indicated that the powders of the material were submicron size. The results of the ICP-AES analysis proved that elemental compositions of the material were similar to those of the targeted one. Cyclic voltammetry (3.0- 4. 2 V) illustrated that the new material had good lithium-ion intercalation/de-intercalation performance. The results of galvanostatic cycling showed that the initial specific discharge capacity of the prepared material was 181.4 mAh/g, and the specific discharge capacity was 177.3 mAh/g after 100 cycles (0. 2C, 3.0 - 4. 2 V, vs. Li^+/Li) with the capacity retention ratio of 97.7%.  相似文献   

10.
LiNi0.78Co2Al0.02O2 cathode materials were prepared with a novel co-precipitation method followed by heat-treating. The properties of the materials were characterized. XRD patterns showed that no secondary phase appeared and the hexagonal lattice parameter c of LiNi0.78Co2Al0.02O2 was larger than that of LiNi0.8Co0.2O2. The SEM images indicated that the powders of the material were submicron size. The results of the ICP-AES analysis proved that elemental compositions of the material were similar to those of the targeted one. Cyclic voltammetry (3.0-4.2 V) illustrated that the new material had good lithium-ion intercalation/de-intercalation performance. The results of galvanostatic cycling showed that the initial specific discharge capacity of the prepared ma-terial was 181.4 mAh/g, and the specific discharge capacity was 177.3 mAh/g after 100 cycles (0.2C,3.0-4.2 V, vs. Li /Li) with the capacity retention ratio of 97.7%.  相似文献   

11.
以LiNi1/3Co1/3Mn1/3O2为正极材料,采用共沉淀合成方法制备LaF3表面修饰LiNi1/3Co1/3Mn1/3O2正极材料,利用X射线衍射(XRD)、扫描电镜(SEM)和电化学测试等方法对合成材料的结构、形貌以及电化学性能进行表征。结果表明:经过LaF3表面修饰的LiNi1/3Co1/3Mn1/3O2材料保持了LiNi1/3Co1/3Mn1/3O2层状结构,其中LaF3表面修饰量为0.59%时,在电压为2.75~4.50V范围内,以0.3mA/cm2电流密度下经恒电流充放电测试,其首次放电比容量为172.7mAh/g,经过50周充放电循环后放电比容量为163.5mAh/g,表现出较高的初始放电比容量和良好的抗过充电性能。  相似文献   

12.
以氧化物和碳酸盐为原料,采用凝胶注模工艺成功合成了固体氧化物燃料电池的阴极材料:(La0.8Sr0.2)0.9MnO3-δ(LSM).利用TGA、DTA和XRD等测试手段分析煅烧温度对所得粉体结晶相组成的影响.研究结果表明:由于凝胶湿坯体在干燥过程中三维有机网络结构发生强烈收缩使得原料粉体颗粒紧密接触,这有利于固相扩散反应的进行,因此凝胶注工艺合成的粉体完全形成钙钛矿结构晶相的温度比传统固相反应法合成的粉体低了近150℃.此外,还研究了凝胶注模工艺合成的LSM粉体制备的LSM阴极在不同温度下烧结后的电化学催化性能.  相似文献   

13.
This work was financially supported by the National Natural Science Foundation of China (No.50472093).  相似文献   

14.
以LiNi1/3CO1/3Mn1/302为正极材料,采用共沉淀合成方法制备LaF3表面修饰LiNimCo1/3Mnm02正极材料,利用X射线衍射(XRD)、扫描电镜(SEM)和电化学测试等方法对合成材料的结构、形貌以及电化学性能进行表征。结果表明:经过LaF3表面修饰的LiNi1/3C01/3Mn1/302材料保持了LiNi1/3Co1/3Mn1/302层状结构,其中LaFs表面修饰量为0.59%时,在电压为2.75-4.50V范围内,以0.3mA/cm。电流密度下经恒电流充放电测试,其首次放电比容量为172.7mAh/g,经过50周充放电循环后放电比容量为163.5mAh/g,表现出较高的初始放电比容量和良好的抗过充电性能。  相似文献   

15.
研制了一种替代净化机动车尾气所用贵金属催化剂的纳米钙钛矿型催化剂 .采用溶胶 -凝胶法制备了B位掺杂的纳米钙钛矿型复合氧化物La0 .8Sr0 .2 Co0 .8Mn0 .2 O3,并将其负载于自制的γ -Al2 O3上 ,于微反在线色谱装置上考察了负载后催化剂对丙烯腈合成反应释放气中的丙烷、CO和丙烯的氧化程度及工艺条件 .确定的最佳工艺条件为 :反应温度为 3 5 5℃ ,氧气体积分数为 89%~ 91% ,空速为 1.3× 10 3h- 1 ;在较宽松的反应条件下 ,丙烷、CO及丙烯的转化率均可达90 %以上 .结果表明 ,催化剂La0 .8Sr0 .2 Co0 .8Mn0 .2 O3/γ -Al2 O3被用于完全氧化反应具有很好的催化氧化活性 .  相似文献   

16.
LiNi0. 5 Mn1. 5 O4 was prepared under various conditions by one-step solid-state reaction in air and its properties were investigated by X-ray diffractormetry (XRD), scanning electron microscopy (SEM) and electrochemical measurement. XRD patterns show that LiNi0. 5 Mn1. 5 O4 synthesized under various conditions has cubic spinel structure. SEM images exhibit that the particle size increases with increasing calcination temperature and time. Electro chemical test shows that the LiNi0. 5 Mn1.5 O4 calcined at 700 ℃ for 24 h delivers up to 143 mA · h/g, and the capacity retains 132 mA · h/g after 30 cycles.  相似文献   

17.
Two types of spinel cathode powders, LiMn2O4 and LiAl0.1Mn1.9O3.9F0.1, were synthesized by solid-state reaction. X-ray diffraction (XRD) patterns of the prepared samples were identified as the spinel structure with a space group of Fd 3 m. The cubic lattice parameter was determined from least-squares fitting of the XRD data. The LiAl0.1Mn1.9O3.9F0.1 sample showed a little lower initial capacity, but better cycling performance than the LiMn2O4 sample at both room temperature and an elevated temperature. The Vanderbilt method was used to test the electrochemical conductivity of the LiMn2O4 samples. The electrochemical impedance spec-troscopy (EIS) method was employed to investigate the electrochemical properties of these spinel LiMn2O4 samples.  相似文献   

18.
采用Sm0.2Ce0.8O1.9(SDC)作为电解质材料,La0.6Sr0.4Co0.2Fe0.8O3-δ(LSCF)作为阴极材料,以溶胶—凝胶法制备的La0.8Mg0.2Cr0.8Zn0.2O3-δ,La0.8Mg0.2Cr0.8Al0.2O3-δ,La0.8Mg0.2Cr0.8Zr0.2O3-δ粉体作为阳极材料,组装硫氧固体氧化物燃料电池。分别以硫蒸汽和二氧化硫气体为燃料气,测试电池阳极材料性能。结果表明:以硫蒸汽为燃料,La0.8Mg0.2Cr0.8Zn0.2O3-δ在750℃达到最大开路电压420 mV,此时最大功率密度为23 mW/cm2;以二氧化硫为燃料,La0.8Mg0.2Cr0.8Zn0.2O3-δ在650℃获得最大开路电压162 mV,最大功率密度为2 mW/cm2。催化效果顺序为La0.8Mg0.2Cr0.8Zn0.2O3-δ>La0.8Mg0.2Cr0.8Al0.2O3-δ>La0.8Mg0.2Cr0.8Zr0.2O3-δ。  相似文献   

19.
柠檬酸法制备了La0.7Ba0.15E0.15Fe0.8Co0.2O3(LBEFC,E=Sr,Ca)系列阴极材料,利用XRD、SEM对LBEFC晶体结构、微观形貌进行分析,采用四探针法测试了LBEFC的电导率。实验结果表明,1 000℃煅烧2 h,LBEFC可以形成单一的畸变钙钛矿结构,LBEFC衍射峰较LaFeO3衍射峰向右偏移,晶胞参数a、b减小,c增大。La0.7Ba0.15Sr0.15Fe0.8Co0.2O3和La0.7Ba0.15Ca0.15Fe0.8Co0.2O3晶胞体积膨胀率分别为43.5%、42.7%,晶格畸变主要发生在(200)、(211)晶面方向。在300~800℃,LBEFC电导率均大于100 S/cm,满足中温固体氧化物燃料电池阴极材料的要求。LBEFC与新型电解质Ce0.8Sm0.2O2在1 200℃下烧结5 h,没有新相生成,具有良好的相容性。  相似文献   

20.
Co3O4/graphite composites were synthesized by precipitation of cobalt oxalate on the surface of graphite and pyrolysis of the precipitate, and the effects of graphite content and calcination temperature on the electrochemical properties of the composites were investigated. The samples were characterized by thermogravimetry and differential thermal analysis (TG/DTA), X-ray diffractometry (XRD), scanning electron microscopy (SEM), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and charge/discharge measurements. With increasing the graphite content, the reversible capacity of the Co3O4/graphite composites decreases, while cycling stability improves dramatically, and the addition of graphite obviously decreases the average potential of lithium intercalation/deintercalation. The reversible capacity of the composites with 50% graphite rises from 583 to 725 mAh/g as the calcination temperature increases from 300 to 500 ℃, and the Co3O4/graphite composites synthesized at 400 ℃ show the best cycling stability without capacity loss in the initial 20 cycles. The CV profile of the composite presents two couples of redox peaks, corresponding to the lithium intercalaction/deintercalation for graphite and Co3O4, respectively. EIS studies indicate that the electrochemical impedance decreases with increasing the graphite content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号