首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
InP/In/sub 0.53/Ga/sub 0.47/As/InP double heterojunction bipolar transistors (DHBT) have been designed for increased bandwidth digital and analog circuits, and fabricated using a conventional mesa structure. These devices exhibit a maximum 450 GHz f/sub /spl tau// and 490 GHz f/sub max/, which is the highest simultaneous f/sub /spl tau// and f/sub max/ for any HBT. The devices have been scaled vertically for reduced electron collector transit time and aggressively scaled laterally to minimize the base-collector capacitance associated with thinner collectors. The dc current gain /spl beta/ is /spl ap/ 40 and V/sub BR,CEO/=3.9 V. The devices operate up to 25 mW//spl mu/m/sup 2/ dissipation (failing at J/sub e/=10 mA//spl mu/m/sup 2/, V/sub ce/=2.5 V, /spl Delta/T/sub failure/=301 K) and there is no evidence of current blocking up to J/sub e//spl ges/12 mA//spl mu/m/sup 2/ at V/sub ce/=2.0 V from the base-collector grade. The devices reported here employ a 30-nm highly doped InGaAs base, and a 120-nm collector containing an InGaAs/InAlAs superlattice grade at the base-collector junction.  相似文献   

2.
InP-In/sub 0.53/Ga/sub 0.47/As-InP double heterojunction bipolar transistors (DHBT) have been designed for use in high bandwidth digital and analog circuits, and fabricated using a conventional mesa structure. These devices exhibit a maximum 391-GHz f/sub /spl tau// and 505-GHz f/sub max/, which is the highest f/sub /spl tau// reported for an InP DHBT-as well as the highest simultaneous f/sub /spl tau// and f/sub max/ for any mesa HBT. The devices have been aggressively scaled laterally for reduced base-collector capacitance C/sub cb/. In addition, the base sheet resistance /spl rho//sub s/ along with the base and emitter contact resistivities /spl rho//sub c/ have been lowered. The dc current gain /spl beta/ is /spl ap/36 and V/sub BR,CEO/=5.1 V. The devices reported here employ a 30-nm highly doped InGaAs base, and a 150-nm collector containing an InGaAs-InAlAs superlattice grade at the base-collector junction. From this device design we also report a 142-GHz static frequency divider (a digital figure of merit for a device technology) fabricated on the same wafer. The divider operation is fully static, operating from f/sub clk/=3 to 142.0 GHz while dissipating /spl ap/800 mW of power in the circuit core. The circuit employs single-buffered emitter coupled logic (ECL) and inductive peaking. A microstrip wiring environment is employed for high interconnect density, and to minimize loss and impedance mismatch at frequencies >100 GHz.  相似文献   

3.
We report an InP-InGaAs-InP double heterojunction bipolar transistor (DHBT), fabricated using a conventional triple mesa structure, exhibiting a 370-GHz f/sub /spl tau// and 459-GHz f/sub max/, which is to our knowledge the highest f/sub /spl tau// reported for a mesa InP DHBT-as well as the highest simultaneous f/sub /spl tau// and f/sub max/ for any mesa HBT. The collector semiconductor was undercut to reduce the base-collector capacitance, producing a C/sub cb//I/sub c/ ratio of 0.28 ps/V at V/sub cb/=0.5 V. The V/sub BR,CEO/ is 5.6 V and the devices fail thermally only at >18 mW//spl mu/m/sup 2/, allowing dc bias from J/sub e/=4.8 mA//spl mu/m/sup 2/ at V/sub ce/=3.9 V to J/sub e/=12.5 mA//spl mu/m/sup 2/ at V/sub ce/=1.5 V. The device employs a 30 nm carbon-doped InGaAs base with graded base doping, and an InGaAs-InAlAs superlattice grade in the base-collector junction that contributes to a total depleted collector thickness of 150 nm.  相似文献   

4.
We report self-aligned indium-phosphide double-heterojunction bipolar transistor devices in a new manufacturable technology with both cutoff frequency (f/sub /spl tau//) and maximum oscillation frequency (f/sub max/) over 300 GHz and open-base breakdown voltage (BV/sub ceo/) over 4 V. Logic circuits fabricated using these devices in a production integrated-circuit process achieved a current-mode logic ring-oscillator gate delay of 1.95 ps and an emitter-coupled logic static-divider frequency of 152 GHz, both of which closely matched model-based circuit simulations.  相似文献   

5.
Small-area regrown emitter-base junction InP/In-GaAs/InP double heterojunction bipolar transistors (DHBT) using an abrupt InP emitter are presented for the first time. In a device with emitter-base junction area of 0.7 /spl times/ 8 /spl mu/m/sup 2/, a maximum 183 GHz f/sub T/ and 165 GHz f/sub max/ are exhibited. To our knowledge, this is the highest reported bandwidth for a III-V bipolar transistor utilizing emitter regrowth. The emitter current density is 6/spl times/10/sup 5/ A/cm/sup 2/ at V/sub CE,sat/ = 1.5 V. The small-signal current gain h/sub 21/ = 17, while collector breakdown voltage is near 6 V for the 1500-/spl Aring/-thick collector. The emitter structure, created by nonselective molecular beam epitaxy regrowth, combines a small-area emitter-base junction and a larger-area extrinsic emitter contact, and is similar in structure to that of a SiGe HBT. The higher f/sub T/ and f/sub max/ compared to previously reported devices are achieved by simplified regrowth using an InP emitter and by improvements to the regrowth surface preparation process.  相似文献   

6.
We report on the dc and RF characterization of laterally scaled, Si-SiGe n-MODFETs. Devices with gate length, L/sub g/, of 80 nm had f/sub T/=79 GHz and f/sub max/=212 GHz, while devices with L/sub g/=70 nm had f/sub T/ as high as 92 GHz. The MODFETs displayed enhanced f/sub T/ at reduced drain-to-source voltage, V/sub ds/, compared to Si MOSFETs with similar f/sub T/ at high V/sub ds/.  相似文献   

7.
Using high-quality polycrystalline chemical-vapor-deposited diamond films with large grains (/spl sim/100 /spl mu/m), field effect transistors (FETs) with gate lengths of 0.1 /spl mu/m were fabricated. From the RF characteristics, the maximum transition frequency f/sub T/ and the maximum frequency of oscillation f/sub max/ were /spl sim/ 45 and /spl sim/ 120 GHz, respectively. The f/sub T/ and f/sub max/ values are much higher than the highest values for single-crystalline diamond FETs. The dc characteristics of the FET showed a drain-current density I/sub DS/ of 550 mA/mm at gate-source voltage V/sub GS/ of -3.5 V and a maximum transconductance g/sub m/ of 143 mS/mm at drain voltage V/sub DS/ of -8 V. These results indicate that the high-quality polycrystalline diamond film, whose maximum size is 4 in at present, is a most promising substrate for diamond electronic devices.  相似文献   

8.
InP-based single heterojunction bipolar transistors (SHBTs) for high-speed circuit applications were developed. Typical common emitter DC current gain (/spl beta/) and BV/sub CEO/ were about 17 and 10 V, respectively. Maximum extrapolated f/sub max/ of 478 GHz with f/sub T/ of 154 GHz was achieved for 0.5 /spl times/ 10 /spl mu/m/sup 2/ emitter size devices at 300 kA/cm/sup 2/ collector current density and 1.5 V collector bias. This is the highest f/sub max/ ever reported for any nontransferred substrate HBTs, as far as the authors know. This paper highlights the optimized conventional process, and the authors have great hopes for the process that offers inherent advantages for the direct implementation to high-speed electronic circuit fabrication.  相似文献   

9.
GaAs-based transistors with the highest f/sub T/ and lowest noise figure reported to date are presented in this letter. A 50-nm T-gate In/sub 0.52/Al/sub 0.48/As/In/sub 0.53/Ga/sub 0.47/As metamorphic high-electron mobility transistors (mHEMTs) on a GaAs substrate show f/sub T/ of 440 GHz, f/sub max/ of 400 GHz, a minimum noise figure of 0.7 dB and an associated gain of 13 dB at 26 GHz, the latter at a drain current of 185 mA/mm and g/sub m/ of 950 mS/mm. In addition, a noise figure of below 1.2 dB with 10.5 dB or higher associated gain at 26 GHz was demonstrated for drain currents in the range 40 to 470 mA/mm at a drain bias of 0.8 V. These devices are ideal for low noise and medium power applications at millimeter-wave frequencies.  相似文献   

10.
Describes 150-nm-thick collector InP-based double heterojunction bipolar transistors with two types of thin pseudomorphic bases for achieving high f/sub T/ and f/sub max/. The collector current blocking is suppressed by the compositionally step-graded collector structure even at J/sub C/ of over 1000 kA/cm/sup 2/ with practical breakdown characteristics. An HBT with a 20-nm-thick base achieves a record f/sub T/ of 351 GHz at high J/sub C/ of 667 kA/cm/sup 2/, and a 30-nm-base HBT achieves a high value of 329 GHz for both f/sub T/ and f/sub max/. An equivalent circuit analysis suggests that the extremely small carrier-transit-delay contributes to the ultrahigh f/sub T/.  相似文献   

11.
We report the design, fabrication, and measurement of InAlAs/InGaAs heterostructure bipolar transistors (HBTs) designed for high speed digital circuits. At 0.96 V V/sub CE/ the current gain cutoff frequency, f/sub /spl tau//, is 300 GHz and the maximum frequency of oscillation, f/sub max/, is 235 GHz. This value of f/sub /spl tau//, is the highest reported for bipolar transistors. At a slightly higher V/sub CE/ bias, a high value of 295 GHz for f/sub /spl tau// and f/sub max/ were obtained simultaneously.  相似文献   

12.
This paper reports on SiGe NPN HBTs with unity gain cutoff frequency (fT) of 207 GHz and an fMAX extrapolated from Mason's unilateral gain of 285 GHz. fMAX extrapolated from maximum available gain is 194 GHz. Transistors sized 0.12×2.5 μm2 have these characteristics at a linear current of 1.0 mA/μm (8.3 mA/μm2). Smaller transistors (0.12×0.5 μm2) have an fT of 180 GHz at 800 μA current. The devices have a pinched base sheet resistance of 2.5 kΩ/sq. and an open-base breakdown voltage BVCEO of 1.7 V. The improved performance is a result of a new self-aligned device structure that minimizes parasitic resistance and capacitance without affecting fT at small lateral dimensions  相似文献   

13.
We demonstrate dual-gate AlGaN/GaN modulation-doped field-effect transistors (MODFETs) with gate-lengths of 0.16 /spl mu/m and 0.35 /spl mu/m for the first and second gates, respectively. The dual-gate device exhibits a current-gain cut-off frequency f/sub T/>60 GHz, and can simultaneously achieve a high breakdown voltage of >+100 V. In comparison to single-gate devices with the same gate length 0.16 /spl mu/m, dual-gate FETs can significantly increase breakdown voltages, largely increasing the maximum allowable drain bias for high power application. The continuous wave (CW) output power is in excess of 3.5 W/mm at 8.2 GHz. The corresponding large-signal gain is 12 dB and the power added efficiency is 45%. The dual-gate device with different gate lengths shows the capability of providing simultaneous high cut-off frequencies, and high breakdown voltages for broadband power amplifiers.  相似文献   

14.
We report on a double-pulse doped, double recess In/sub 0.35/Al/sub 0.65/As-In/sub 0.35/Ga/sub 0.65/As metamorphic high electron mobility transistor (MHEMT) on GaAs substrate. This 0.15-/spl mu/m gate MHEMT exhibits excellent de characteristics, high current density of 750 mA/mm, extrinsic transconductance of 700 mS/mm. The on and off state breakdown are respectively of 5 and 13 V and defined It gate current density of 1 mA/mm. Power measurements at 60 GHz were performed on these devices. Biased between 2 and 5 V, they demonstrated a maximum output power of 390 mW/mm at 3.1 V of drain voltage with 2.8 dB power gain and a power added efficiency (PAE) of 18%. The output power at 1 dB gain compression is still of 300 mW/mm. Moreover, the linear power gain is of 5.2 dB. This is to our knowledge the best output power density of any MHEMT reported at this frequency.  相似文献   

15.
A novel top-illuminated In/sub 0.53/Ga/sub 0.47/As p-i-n photodiodes (MM-PINPD) grown on GaAs substrate by using linearly graded metamorphic In/sub x/Ga/sub 1-x/P (x graded from 0.49 to 1) buffer layer is reported. The dark current, optical responsivities, noise equivalent power, and operational bandwidth of the MM-PINPD with aperture diameter of 60 /spl mu/m are 13 pA, 0.6 A/W, 3.4/spl times/10/sup -15/ W/Hz/sup 1/2/, and 7.5 GHz, respectively, at 1550 nm. The performances of the MM-PINPD on GaAs are demonstrated to be comparable to those of a similar device made on InGaAs-InP substrate.  相似文献   

16.
The selectively implanted buried subcollector (SIBS) is a method to decouple the intrinsic and extrinsic C/sub BC/ of InP-based double-heterojunction bipolar transistors (DHBTs). Similar to the selectively implanted collector (SIC) used in Si-based bipolar junction transistors (BJTs) and HBTs, ion implantation is used to create a N+ region in the collector directly under the emitter. By moving the subcollector boundary closer to the BC junction, SIBS allows the intrinsic collector to be thin, reducing /spl tau//sub C/, while simultaneously allowing the extrinsic collector to be thick, reducing C/sub BC/. For a 0.35 /spl times/ 6 /spl mu/m/sup 2/ emitter InP-based DHBT with a SIBS, 6 fF total C/sub BC/ and >6 V BV/sub CBO/ were obtained with a 110-nm intrinsic collector thickness. A maximum f/sub T/ of 252 GHz and f/sub MAX/ of 283 GHz were obtained at a V/sub CE/ of 1.6 V and I/sub C/ of 7.52 mA. Despite ion implantation and materials regrowth during device fabrication, a base and collector current ideality factor of /spl sim/2.0 and /spl sim/1.4, respectively, at an I/sub C/ of 100 /spl mu/A, and a peak dc /spl beta/ of 36 were measured.  相似文献   

17.
Type-II InP/GaAsSb/InP double heterojunction bipolar transistors (DHBTs) with a 15-nm base were fabricated by contact lithography: 0.73/spl times/11 /spl mu/m/sup 2/ emitter devices feature f/sub T/=384GHz (f/sub MAX/=262GHz) and BV/sub CEO/=6V. This is the highest f/sub T/ ever reported for InP/GaAsSb DHBTs, and an "all-technology" record f/sub T//spl times/BV/sub CEO/ product of 2304 GHz/spl middot/V. This result is credited to the favorable scaling of InP/GaAsSb/InP DHBT breakdown voltages (BV/sub CEO/) in thin collector structures.  相似文献   

18.
《Electronics letters》1993,29(2):169-170
MBE grown metamorphic In/sub 0.29/Al/sub 0.71/As/In/sub 0.3/Ga/sub 0.7/As/GaAs high electron mobility transistors (HEMTs) have been successfully fabricated. A 0.4 mu m triangular gate device showed transconductance as high as 700 mS/mm at a current density of 230 mA/mm. The measured f/sub T/ was 45 GHz and f/sub max/ was 115 GHz. These high values are, to the authors knowledge, the first reported for submicrometre metamorphic InAlAs/InGaAs/GaAs HEMTs with an indium content of 30%.<>  相似文献   

19.
AlGaN/GaN HEMTs on SiC with f/sub T/ of over 120 GHz   总被引:1,自引:0,他引:1  
AlGaN/GaN high electron mobility transistors (HEMTs) grown on semi-insulating SiC substrates with a 0.12 /spl mu/m gate length have been fabricated. These 0.12-/spl mu/m gate-length devices exhibited maximum drain current density as high as 1.23 A/mm and peak extrinsic transconductance of 314 mS/mm. The threshold voltage was -5.2 V. A unity current gain cutoff frequency (f/sub T/) of 121 GHz and maximum frequency of oscillation (f/sub max/) of 162 GHz were measured on these devices. These f/sub T/ and f/sub max/ values are the highest ever reported values for GaN-based HEMTs.  相似文献   

20.
In this paper, the self-consistent, frequency-dependent dielectric constant epsivr(f) and dielectric loss tandelta(f) of several materials are determined over the range 2 to 30 GHz using a short-pulse propagation technique and an iterative extraction based on a rational function expansion. The simple measurement technique is performed in the time domain on representative printed circuit board wiring. Broadband, fully causal transmission-line models based on these results are generated up to 50 GHz for card wiring using low loss materials including BT, Nelco N4000-13, and Nelco N4000-13SI. Simulation and modeling results highlight the need for the accurate frequency-dependent dielectric loss extraction. Signal propagation based on these results shows very good agreement with measured step and pulse time-domain excitations and provides validation of the measurement and model generation technique  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号