首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
基于S变换的电能质量扰动支持向量机分类识别   总被引:64,自引:7,他引:64  
采用s变换和支持向量机进行电能质量扰动的分类识别。作为连续小波变换和短时傅立叶变换的发展,S变换引入了宽度与频率成反向变化的高斯窗,具有与频率相关的分辨率。由于S变换具有良好的时频特性,因而非常适合于进行电能质量扰动信号特征提取。首先通过S变换进行扰动信号特征提取,然后构造支持向量机分类树进行扰动分类。算例表明该方案具有分类准确率高,对噪声不敏感,训练样本少等优点,是电能质量扰动识别的有效方法。  相似文献   

2.
基于S变换和最小二乘支持向量机的电能质量扰动识别   总被引:2,自引:0,他引:2  
采用S变换和最小二乘支持向量机相结合,构建了一种电能质量扰动识别的新方法.首先利用S变换对电能质量扰动信号进行时频分解;然后,从扰动信号S变换的结果中,提取扰动信号的特征向量,组成训练样本和测试样本;最后,使用最小输出编码的最小二乘支持向量机对扰动信号进行训练,实现电能质量扰动信号自动分类和识别.仿真结果表明,该方法识别准确率高,抗噪能力强,且训练时间很短,适用于电能质量扰动辨识系统.  相似文献   

3.
提出一种多级支持向量机对电能质量扰动事件分类的方法,该方法基于改进S变换和多级支持向量机。改进S变换首先通过傅里叶变换提取信号的主要频率成分,然后根据提取的主要频率成分设定相应的调节因子λ,使其在低频段有较高的时间分辨率,在高频段有较高的频率分辨率,从而增强了S变换的特征量提取能力。之后对各类信号的特征参数进行优化处理,产生复合特征量,最后在此基础上将复合特征量设置为支持向量,生成一个多级支持向量机分类器,从而实现多种电能质量扰动信号的识别。采用"二分树"分类的多级支持向量机支持向量较少,且容易实现。仿真测试结果验证了该方法相对于传统的基于S变换和支持向量机分类方法有较强的分辨率和抗噪能力。  相似文献   

4.
电能质量扰动识别时,采用小波变换提取能量分布特征时小波分解层数通常缺乏理论依据,且采用支持向量机( SVM)分类时训练样本通常只含某一种信噪比(SNR)的噪声.针对以上两个问题,利用小波变换对电能质量扰动信号进行多分辨率分析时,根据扰动信号的采样率来确定小波分解层数,提取小波能量分布差特征作为SVM的输入向量,减少了计算量和特征维数;采用信噪比在较大范围内分布较均匀的训练样本来训练SVM,增强了SVM的范化能力.仿真实验表明,该方法提高了电能质量扰动识别准确率;在20dB噪声条件下,该方法对6种电能质量扰动的识别准确率仍达到95.20%.  相似文献   

5.
吕干云  方奇品 《高电压技术》2010,36(10):2565-2569
电能质量扰动检测识别对电能质量的监测和治理改善都具有重要作用。为更好地识别电能质量扰动,提出了一种基于关联向量机和S变换的电能质量扰动识别方法。首先,通过S变换提取正弦信号、谐波、电压波动、电压暂降、电压暂升、暂态振荡、谐波暂降及谐波暂升等9种电能质量扰动的主要特征,然后用关联向量机对特征样本进行训练及分类。算例结果表明,该方法能有效地识别出电能质量扰动信号类型,识别时间短,且正确率极高,达98.8%,是应用于实时电能质量监测工程实际的很好选择。  相似文献   

6.
陈华丰  张葛祥 《电网技术》2013,(5):1272-1278
提出一种新型电能质量扰动识别方法,该方法采用快速傅里叶变换(fast Fourier transform,FFT)结合动态测度法提取3种特征以及S变换提取4种特征;采用决策树和支持向量机(support vector machine,SVM)设计组合分类器。针对FFT频谱中谐波频率明显的扰动类型,采用极值点包络的动态测度法提取频谱中的主要频率点特征,结合S变换提取的特征首先将扰动类型进行初步归类,然后采用S变换的2个特征就能进行后续分类;决策树分类过程中采用SVM来区分电压暂降和中断,克服了特征阈值随信噪比(signal-to-noise ratio,SNR)变化难以确定的问题。仿真实验表明,该方法能够准确识别包含2种复合扰动在内的11种电能质量扰动信号,SNR低至20 dB时准确率仍达到96.50%;且与已有文献的分类结果对比表明,该方法准确率高,稳定性强,在低SNR条件下分类结果优势明显。  相似文献   

7.
李琦  许素安  施阁  袁科  王家祥 《陕西电力》2023,(5):30-35,50
针对目前复合电能质量扰动(PQD)信号特征冗余,分类识别准确率低的问题,提出了一种基于S变换和改进鲸鱼算法支持向量机(IWOA-SVM)的复合电能质量扰动识别方法。首先,利用S变换对7种单一电能质量扰动和生成的13种复合扰动信号进行时频分析,使复杂扰动信号的特征得以凸显。设计特征提取方法,从实频矩阵中尽可能地获取便于分类的信号特征信息;其次,引入自适应权重因子和随机差分变异策略对WOA进行优化,提升其搜索能力;最后建立IWOA-SVM分类预测模型,优化SVM高斯核函数参数,以获得更好的鲁棒性和泛化能力,对提取的特征样本进行自动分类和识别。实验结果表明,所提方法分类识别准确率高,能有效识别多种复合PQD信号,有助于评估与治理电能质量问题。  相似文献   

8.
基于改进小波能熵和支持向量机的短时电能质量扰动识别   总被引:12,自引:0,他引:12  
提出了一种基于改进小波能熵和支持向量机(SVM)的短时电能质量扰动识别方法.首先对采样信号进行小波多分辨分解与重构处理,然后引入滑动时间窗算法,从时一频域结合分析的角度,选用高频带的小波系数进行特征提取;提出了改进小波能熵算法,并用此计算相应的熵值作为扰动特征量,将这些特征量作为SVM的输入,实现短时电能质量扰动的辨识.通过原始小波能熵与改进小波能熵的对比,仿真结果表明了改进算法的有效性.  相似文献   

9.
基于S变换和多级SVM的电能质量扰动检测识别   总被引:16,自引:4,他引:16  
提出了一种基于S变换和多级支持向量机(SVMs)的电能质量扰动检测和识别方法.首先通过S变换对电能质量扰动信号进行时频分析,有效实现对各种扰动的检测输出.然后对检测输出进行时频特征提取,并通过一个N?1级支持向量机器分类器,最后实现N种电能质量扰动信号的分类识别.测试结果表明,该方法能有效识别参数大范围内随机变化的各种电能质量扰动,识别正确率高,且训练时间很短,实时性能好.  相似文献   

10.
电能质量扰动的准确识别与有效分类是改善与治理电能质量问题的前提,针对当前电能质量扰动识别与分类存在的不足,提出一种基于改进S变换和遗传算法(genetic algorithm,GA)优化支持向量机(support vector machine,SVM)的电能质量扰动识别与分类方法.首先,在S变换高斯窗函数中引入调节因子...  相似文献   

11.
为获得可靠的高质量电能,提高电能质量扰动(Power Quality Distrubances,PQD)类型识别准确率,提出了一种基于二维离散余弦S变换(2D-DCST)的PQD类型识别方法.首先在数学模型的基础上,生成包括7种复合扰动在内的17类不同的电能质量事件.然后将一维的PQD信号转换成行列相等的二维信号,利用...  相似文献   

12.
针对特征提取手段自身局限性导致的扰动典型特征间边缘重叠对混和扰动辨识的影响,提出一种基于多域特征优选的多核支持向量机辨识算法。首先,利用多种特征提取手段获取混和扰动多域典型特征。其次,为考虑高维特征与目标类别的相关性和度量尺度的规范化,利用改进的最大相关最小冗余准则优选用于辨识的关键特征子集,进而利用计及半径信息的多核SVM来辨识混合扰动波形。仿真结果表明,所提辨识算法能够克服混合扰动特征空间模糊对辨识精度的影响,受噪声影响小,稳定性好。  相似文献   

13.
电能质量扰动识别是电能质量检测系统的重要组成部分,也是进一步采取适当措施对其进行治理和控制的前提和依据。通过对扰动信号的S变换提取出扰动信号基频和高频特征,从而实现对电能质量扰动的分类,并通过S变换后的基频和高频特征分别提取出扰动信号前后的瞬时振幅以及扰动起始、终止时刻。实验结果表明,S变换可准确检测出电能质量扰动信号所属类别和扰动特性,以及扰动信号的起始、终止时刻。  相似文献   

14.
This paper presents new features and a novel decision-making system for automated classification of power quality disturbances. The most common types of disturbances including flickers, harmonics, impulses, notches, outages, sags, swells, and switching transients are studied. Disturbances consisting of both sag and harmonic, or both swell and harmonic are also considered. It is assumed that the analyzed waveforms are available in sampled form. The signal processing techniques utilized to extract the distinctive features of the waveforms are Fourier and S-transform. A new method based on binary feature matrix is designed for making a decision regarding the disturbance type. Evaluation studies for verifying the accuracy of the method are presented.  相似文献   

15.
为了预防电压崩溃,需要评估系统运行状态到电压极限点的距离.该距离通常用潮流方程计算,但对于高维电力系统,这种方法计算速度较慢,难以满足实时电压稳定评估的要求.为减少评估时间,应用快速且可靠的评估技术是很重要的.本文提出了一种基于支持向量机的静态电压稳定评估方法,该方法充分发挥支持向量机在解决高维、非线性和有限样本问题方面体现出的优势,保证了电压稳定评估模型的泛化能力,具有较快的评估速度和较高的预测精度.在WSCC9节点测试系统中的应用结果证明了该方法的有效性.  相似文献   

16.
针对目前随钻测量的需要,提出了一种基于支持向量机预测的随钻测量方法.与传统随钻测量方法相比该方法能够预测提示井下钻头需要待钻进的地理方位位置,为司钻人员下一步的施工钻进提供方位信息.通过现场试验数据测试,结果表明,该方法能够预测提示井下定向钻进过程中的定向方位信息,大幅度节省钻进施工时间.  相似文献   

17.
油中溶解气体分析是变压器绝缘故障诊断的重要方法。为了提高分类的准确度和可靠性,应用最小二乘支持向量机理论建立了变压器的分类模型。该模型以变压器油中5种主要特征气体作为输入量,以7种变压器状态作为输出量,选用了径向基核,使用了一对一的多分类算法,充分发挥了支持向量机具有较高泛化能力的优势。通过大量的实例分析,并将诊断结果与IEC三比值法、改良三比值法和BP神经网络的诊断结果相比较,表明基于径向基核的最小二乘支持向量机在变压器故障诊断中具有更高的准确率。  相似文献   

18.
针对复合电能质量扰动(power quality disturbance, PQD)识别中特征提取复杂、识别正确率低和模型难以轻量化等问题,提出一种利用递归图(recurrence plot, RP)对PQD信号可视化方法和基于知识蒸馏的模型训练方法。首先,基于RP挖掘PQD信号隐含特征并构建图像数据集,并利用深度残差收缩网络(deep residual shrinkage network, DRSN)对图像数据集进行更深层次特征提取并完成自主分类。然后,基于知识蒸馏(knowledge distillation, KD)让已训练的DRSN指导轻量化网络MobileNetV3进行训练,通过蒸馏实现知识的跨网络传输。最后,仿真实验和硬件实验表明,利用知识蒸馏训练的MobileNetV3能实现高精度且轻量化的复合扰动识别,同时在30 dB噪声环境下正确率能提升1.06%,对实际扰动信号识别效果良好,具有良好的噪声鲁棒性。  相似文献   

19.
基于广义S变换与PSO-PNN的电能质量扰动识别   总被引:2,自引:1,他引:2       下载免费PDF全文
为了克服从电网电能质量监测系统的大数据中自动识别出电能质量扰动的困难,提出了一种基于广义S变换与PSO-PNN的电能质量扰动识别新方法。该方法利用了广义S变换能兼顾时频分辨率的特点,首先使用广义S变换分析扰动信号的时频特性,接着从广义S变换模矩阵中提取出扰动信号的时频特征量,然后用PSO-PNN分类器对扰动信号进行分类识别。PSO算法的使用克服了PNN的平滑因子没有确定选取方法的缺陷,使分类器性能大大提升。仿真实验结果表明,该方法能够对常见的6种电能质量扰动进行高效的分类识别,分类正确率高,对噪声不敏感,具有良好的应用价值。  相似文献   

20.
各类分布式设备和智能设备接入电力系统,使得电力系统对电能的波动越来越敏感,这导致对电能质量扰动(PQD)的识别和处理变得越来越重要。通过将分段改进S变换(SMST)和随机森林(RF)算法相结合,提出了一种用于复杂噪声环境下PQD识别的新方法。首先,基于检测误差和峰度对SMST的不同频段进行分别调参,并使用SMST提取待检测信号的75种时频特征,构成原始特征集。然后,改进分类回归树(CART)的节点分裂过程,加入了离散值处理策略并使用Gini指数的下降作为新的节点分裂规则。同时,在下次节点分裂前,将基尼指数下降值为零的特征从特征集中删除。最后,使用改进的CART算法构建了RF分类器并对复合PQD信号进行分类。实验证明,在不同的信噪比条件下,新方法均能有效识别多数单一PQD信号和常见的双重复合PQD信号。虽然新方法在运行效率方面仍有一定的改进空间,但其在不同层面上的改进均能有效提升PQD识别精度,且平均分类精度明显高于各类传统PQD识别方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号