首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 46 毫秒
1.
基于S变换的电能质量扰动支持向量机分类识别   总被引:64,自引:7,他引:64  
采用s变换和支持向量机进行电能质量扰动的分类识别。作为连续小波变换和短时傅立叶变换的发展,S变换引入了宽度与频率成反向变化的高斯窗,具有与频率相关的分辨率。由于S变换具有良好的时频特性,因而非常适合于进行电能质量扰动信号特征提取。首先通过S变换进行扰动信号特征提取,然后构造支持向量机分类树进行扰动分类。算例表明该方案具有分类准确率高,对噪声不敏感,训练样本少等优点,是电能质量扰动识别的有效方法。  相似文献   

2.
基于S变换和最小二乘支持向量机的电能质量扰动识别   总被引:2,自引:0,他引:2  
采用S变换和最小二乘支持向量机相结合,构建了一种电能质量扰动识别的新方法.首先利用S变换对电能质量扰动信号进行时频分解;然后,从扰动信号S变换的结果中,提取扰动信号的特征向量,组成训练样本和测试样本;最后,使用最小输出编码的最小二乘支持向量机对扰动信号进行训练,实现电能质量扰动信号自动分类和识别.仿真结果表明,该方法识别准确率高,抗噪能力强,且训练时间很短,适用于电能质量扰动辨识系统.  相似文献   

3.
提出一种多级支持向量机对电能质量扰动事件分类的方法,该方法基于改进S变换和多级支持向量机。改进S变换首先通过傅里叶变换提取信号的主要频率成分,然后根据提取的主要频率成分设定相应的调节因子λ,使其在低频段有较高的时间分辨率,在高频段有较高的频率分辨率,从而增强了S变换的特征量提取能力。之后对各类信号的特征参数进行优化处理,产生复合特征量,最后在此基础上将复合特征量设置为支持向量,生成一个多级支持向量机分类器,从而实现多种电能质量扰动信号的识别。采用"二分树"分类的多级支持向量机支持向量较少,且容易实现。仿真测试结果验证了该方法相对于传统的基于S变换和支持向量机分类方法有较强的分辨率和抗噪能力。  相似文献   

4.
电能质量扰动识别时,采用小波变换提取能量分布特征时小波分解层数通常缺乏理论依据,且采用支持向量机( SVM)分类时训练样本通常只含某一种信噪比(SNR)的噪声.针对以上两个问题,利用小波变换对电能质量扰动信号进行多分辨率分析时,根据扰动信号的采样率来确定小波分解层数,提取小波能量分布差特征作为SVM的输入向量,减少了计算量和特征维数;采用信噪比在较大范围内分布较均匀的训练样本来训练SVM,增强了SVM的范化能力.仿真实验表明,该方法提高了电能质量扰动识别准确率;在20dB噪声条件下,该方法对6种电能质量扰动的识别准确率仍达到95.20%.  相似文献   

5.
吕干云  方奇品 《高电压技术》2010,36(10):2565-2569
电能质量扰动检测识别对电能质量的监测和治理改善都具有重要作用。为更好地识别电能质量扰动,提出了一种基于关联向量机和S变换的电能质量扰动识别方法。首先,通过S变换提取正弦信号、谐波、电压波动、电压暂降、电压暂升、暂态振荡、谐波暂降及谐波暂升等9种电能质量扰动的主要特征,然后用关联向量机对特征样本进行训练及分类。算例结果表明,该方法能有效地识别出电能质量扰动信号类型,识别时间短,且正确率极高,达98.8%,是应用于实时电能质量监测工程实际的很好选择。  相似文献   

6.
陈华丰  张葛祥 《电网技术》2013,(5):1272-1278
提出一种新型电能质量扰动识别方法,该方法采用快速傅里叶变换(fast Fourier transform,FFT)结合动态测度法提取3种特征以及S变换提取4种特征;采用决策树和支持向量机(support vector machine,SVM)设计组合分类器。针对FFT频谱中谐波频率明显的扰动类型,采用极值点包络的动态测度法提取频谱中的主要频率点特征,结合S变换提取的特征首先将扰动类型进行初步归类,然后采用S变换的2个特征就能进行后续分类;决策树分类过程中采用SVM来区分电压暂降和中断,克服了特征阈值随信噪比(signal-to-noise ratio,SNR)变化难以确定的问题。仿真实验表明,该方法能够准确识别包含2种复合扰动在内的11种电能质量扰动信号,SNR低至20 dB时准确率仍达到96.50%;且与已有文献的分类结果对比表明,该方法准确率高,稳定性强,在低SNR条件下分类结果优势明显。  相似文献   

7.
李琦  许素安  施阁  袁科  王家祥 《陕西电力》2023,(5):30-35,50
针对目前复合电能质量扰动(PQD)信号特征冗余,分类识别准确率低的问题,提出了一种基于S变换和改进鲸鱼算法支持向量机(IWOA-SVM)的复合电能质量扰动识别方法。首先,利用S变换对7种单一电能质量扰动和生成的13种复合扰动信号进行时频分析,使复杂扰动信号的特征得以凸显。设计特征提取方法,从实频矩阵中尽可能地获取便于分类的信号特征信息;其次,引入自适应权重因子和随机差分变异策略对WOA进行优化,提升其搜索能力;最后建立IWOA-SVM分类预测模型,优化SVM高斯核函数参数,以获得更好的鲁棒性和泛化能力,对提取的特征样本进行自动分类和识别。实验结果表明,所提方法分类识别准确率高,能有效识别多种复合PQD信号,有助于评估与治理电能质量问题。  相似文献   

8.
基于改进小波能熵和支持向量机的短时电能质量扰动识别   总被引:12,自引:0,他引:12  
提出了一种基于改进小波能熵和支持向量机(SVM)的短时电能质量扰动识别方法.首先对采样信号进行小波多分辨分解与重构处理,然后引入滑动时间窗算法,从时一频域结合分析的角度,选用高频带的小波系数进行特征提取;提出了改进小波能熵算法,并用此计算相应的熵值作为扰动特征量,将这些特征量作为SVM的输入,实现短时电能质量扰动的辨识.通过原始小波能熵与改进小波能熵的对比,仿真结果表明了改进算法的有效性.  相似文献   

9.
基于S变换和多级SVM的电能质量扰动检测识别   总被引:16,自引:4,他引:16  
提出了一种基于S变换和多级支持向量机(SVMs)的电能质量扰动检测和识别方法.首先通过S变换对电能质量扰动信号进行时频分析,有效实现对各种扰动的检测输出.然后对检测输出进行时频特征提取,并通过一个N?1级支持向量机器分类器,最后实现N种电能质量扰动信号的分类识别.测试结果表明,该方法能有效识别参数大范围内随机变化的各种电能质量扰动,识别正确率高,且训练时间很短,实时性能好.  相似文献   

10.
电能质量扰动的准确识别与有效分类是改善与治理电能质量问题的前提,针对当前电能质量扰动识别与分类存在的不足,提出一种基于改进S变换和遗传算法(genetic algorithm,GA)优化支持向量机(support vector machine,SVM)的电能质量扰动识别与分类方法.首先,在S变换高斯窗函数中引入调节因子...  相似文献   

11.
电能质量复合扰动分类识别   总被引:5,自引:2,他引:3  
电能质量扰动的分类分为信号特征提取和分类器2个阶段,采用S变换和支持向量机构造电能质量复合扰动的分类识别方案.利用S变换进行扰动信号特征提取,构造支持向量机静态分类树,再通过基于Mercer核的聚类方法对静态分类树进行动态扩展,形成动态分类树,实现对复合扰动的识别.给出了电能质量复合扰动分类算法的4个步骤:构建静态分类树;用基于Mercer核的聚类方法进行聚类分析;构建动态分类树;对新发现的扰动确定其具体类型,并给其命名.算例表明该方法不仅可以有效分类识别电压突降、电压突升、电压中断、暂态振荡、电压尖峰、电压缺口和谐波等7种电能质量扰动,还可以识别由其组合而成的电能质量复合扰动.  相似文献   

12.
基于改进S变换的复合电压暂降源识别特征分析   总被引:3,自引:0,他引:3       下载免费PDF全文
电压暂降是较常见、影响较大的电能质量问题,识别电压暂降扰动源对改善和治理电压暂降具有重要意义。分析了由线路短路故障、感应电动机启动、变压器投入等单一电压暂降扰动源和复合电压暂降扰动源引起的电压暂降现象,提出采用改进S变换分析复合电压暂降扰动源识别特征。根据基频幅值曲线和2~5倍基频幅值和曲线,从统计量、熵和能量等方面构建电压暂降识别特征指标,将这些特征指标作为支持向量机的输入实现对不同类型电压暂降扰动源的分类识别。仿真结果表明,采用改进S变换构建电压暂降识别特征指标比标准S变换在电压暂降扰动源分类识别上效果更好。  相似文献   

13.
基于相空间重构和支持向量机的电能扰动分类方法   总被引:3,自引:2,他引:1  
电能扰动的分类需要信号特性提取和分类器构造2个阶段,文中采用相空间重构和支持向量机的组合,提出了一种全新的电能扰动信号的分类方法。首先利用相空间重构方法构造扰动信号轨迹,通过编码获得二进制轨迹图像。针对该图像定义了4类具有区别性的指标,以表征不同扰动类型的特性。然后将特性指标作为支持向量机分类器的输入矢量,实现自动分类识别。算例表明该方法计算量少,正确率高,所需训练样本少,可以有效分类识别电压暂降、电压瞬升、电压中断、脉冲振荡、谐波、闪变等6种电能扰动。  相似文献   

14.
提出了一种复合电能质量扰动识别方法。为避免复合电能质量扰动类型中单一扰动相互影响而造成的特征混叠或失效问题,采用FFT变换结合动态测度法提取6个特征和S变换提取5个特征,从基频、中频、高频、基频标准差、频谱极值点对称等各个方面刻画扰动信号的特征;然后构建基于规则基“IF—THEN”形式的分类器,提取的特征输入分类器后能自动识别电能质量扰动类型。仿真结果表明,在一定噪声条件下,所提出的分类方法能准确识别26种扰动类型,其中包含8种单一扰动类型以及18种双重扰动类型。  相似文献   

15.
电力系统中海量暂态扰动的分析与治理需要以高效准确的扰动分类为基础。现有扰动识别方法缺少合理的特征选择环节,分类器过于复杂,不能满足高效分类的需要。提出一种新的电能质量扰动特征选择方法。首先,对原始信号使用S变换进行预处理,提取具有代表性的25种扰动信号特征构建原始特征集合;然后,根据极限学习机识别准确率构造用于扰动特征选择的遗传算法适应度函数;最后,用遗传算法来进行迭代运算,确定最优特征集合。实验证明,新方法能够有效去除冗余特征,在保证分类准确率前提下,有效降低分类器复杂度,提高分类效率。  相似文献   

16.
为获得可靠的高质量电能,提高电能质量扰动(Power Quality Distrubances,PQD)类型识别准确率,提出了一种基于二维离散余弦S变换(2D-DCST)的PQD类型识别方法.首先在数学模型的基础上,生成包括7种复合扰动在内的17类不同的电能质量事件.然后将一维的PQD信号转换成行列相等的二维信号,利用...  相似文献   

17.
针对电能质量信号分类存在实时性差、准确度低的问题,提出了一种基于HMT(hitormiss transform)小波范数熵(normentropy,NE)和支持向量机(support vector machine,SVM)的电能质量扰动识别方法。根据HMT小波分解每一层能量不同的特点,取扰动信号的10层小波分解的范数熵组成特征矩阵。特征量起到了对扰动信号分形的作用,以此作为SVM的输入。为了提高分类的准确度,研究采用了粒子群算法(particle search optimization,PSO)对SVM参数进行了寻优,分类准确度达到99%左右。同时比较了HMT小波和传统db4小波分别和SVM结合时的准确度,证明了HMT小波的优势和本文特征量提取法的有效性。而对于含噪声的电能质量信号,采用了广义形态滤波器进行了滤波预处理。仿真结果表明,该方法识别准确率高,稳定性好,适用于电能质量扰动识别系统。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号