首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biodiesel has attracted considerable attention as an alternative fuel during the past decades. The main hurdle to the commercialization of biodiesel is the cost of the raw material. Use of an inexpensive raw material such as rice bran oil is an attractive option to lower the cost of biodiesel. Two commercially available immobilized lipases, Novozym 435 and IM 60, were employed as catalyst for the reaction of rice bran oil and methanol. Novozym 435 was found to be more effective in catalyzing the methanolysis of rice bran oil. Methanolysis of refined rice bran oil and fatty acids (derived from rice bran oil) catalyzed by Novozym 435 (5% based on oil weight) can reach a conversion of over 98% in 6 h and 1 h, respectively. Methanolysis of rice bran oil with a free fatty acid content higher than 18% resulted in lower conversions (<68%). A two‐step lipase‐catalyzed methanolysis of rice bran oil was developed for the efficient conversion of both free fatty acid and acylglycerides into fatty acid methyl ester. More than 98% conversion can be obtained in 4–6 h depending on the relative proportion of free fatty acid and acylglycerides in the rice bran oil. Inactivation of lipase by phospholipids and other minor components was observed during the methanolysis of crude rice bran oil. Simultaneous dewaxing/degumming proved to be efficient in removing phospholipids and other minor components that inhibit lipase activity from crude rice bran oil. Copyright © 2005 Society of Chemical Industry  相似文献   

2.
The role of viscosity on was settling and refining loss in rice bran oil (RBO) has been studied with model systems of refined peanut oil and RBO of different free fatty acids contents. Wax was the only constituent of RBO that significantly increased the viscosity (81.5%) of oil. Monoglycerides synergistically raised the viscosity of the oil (by 114.2%) and lowered the rate of wax settling. Although a reduction in the viscosity of the oil significantly decreased the refining loss, the minimum loss attained was still 20% more than the theoretically predicted value. This led us to conclude that some chemical constituents, such as monoglycerides, must be removed before dewaxing; thereafter, oryzanol and phospholipids have to be removed. One can get an oil free of wax, recover other by-products and reduce processing losses.  相似文献   

3.
Autocatalytic esterification of free fatty acids (FFA) in rice bran oil (RBO) containing high FFA (9.5 to 35.0% w/w) was examined at a high temperature (210°C) and under low pressure (10 mm Hg). The study was conducted to determine the effectiveness of monoglyceride in esterifying the FFA of RBO. The study showed that monoglycerides can reduce the FFA level of degummed, dewaxed, and bleached RBO to an acceptable level (0.5±0.10 to 3.5±0.19% w/w) depending on the FFA content of the crude oil. This allows RBO to be alkali refined, bleached, and deodorized or simply deodorized after monoglyceride treatment to obtain a good quality oil. The color of the refined oil is dependent upon the color of the crude oil used.  相似文献   

4.
Rice bran oil, not being a seed‐derived oil, has a composition qualitatively different from common vegetable oils and the conventional vegetable oil processing technologies are not adaptable without incurring huge losses. The oil's unusual high content of waxes, free fatty acids, unsaponifiable constituents, phospholipids, glycolipids and its dark color, all cause difficulties in the refining process. An attempt was made in this investigation to look into factors that are responsible for such difficulties and to develop suitable methodologies for physical refining of rice bran oil. Special attention was given to dewaxing, degumming and deacidification steps. The high content of glycolipids (∼6%) present in the oil was found to be a central problem and their removal appeared crucial for successful processing of the oil. We have also isolated and identified, for the first time, phosphorus‐containing glycolipids that are unique to this oil. These compounds prevent a successful degumming of the oil and their high surface activity leads to unusually high refining losses during alkali refining. A number of simple processes has been evolved, including 1) a simultaneous dewaxing and degumming process, 2) an unusual enzymatic process to degum the oil, 3) processes for the removal of the glycolipids including the phosphoglycolipids and 4) a process for the isolation of the glycolipids which may have potential applications in the food, cosmetic and pharmaceutical industries. The processing protocol suggested here becomes the first and only one to produce an oil with less than 5 ppm of phosphorus from crude rice bran oil, rendering it thus suitable for physical refining. We believe that the present results are very significant and should contribute to a better utilization of this valuable oil.  相似文献   

5.
对米糠综合利用的途径进行了详细论述;并总结厂各种米糠精制产品在日用化工、医药工业、食品工业、精细化工领域的具体用途,包括米糠油的浸提技术,米糠油作为营养保健食品的开发利用,米糠油作为油脂化工原材料的深加工;米糠油精炼皂脚中提取游离脂肪酸及脂肪酸衍生物的制备;米糠脱水、脱臭、脱色的小皂化物提取谷甾醇、生育酚、谷维素的方法;米糠脱蜡副产物制备糠蜡和二十烷醇的利用及米糠饼(粕)提取植酸钙、植酸和肌醇的利用途径,最后提出了大力发展我国米糠产业的市场前景。  相似文献   

6.
Compared to other vegetable oils, rice bran oil (RBO) has a characteristic dark color which further deepens upon heating or frying of foods in the oil. Darkening of the oil during heating has been studied. The dark color‐causing material in crude, chemically refined and physically refined rice bran oils was separated using a silica gel column for a hexane‐eluted oil fraction and a methanol eluted fraction. The methanol eluted fraction for all the above three types of RBO produced a dark color upon heating, hence the physically refined RBO methanol fraction was investigated further and contained monoglycerides (23.4 %) and diglycerides (67.4 %) of linoleic + linolenic acids in its methanol fraction as analyzed by column chromatography and HPLC which decreased in concentration after heating. The linoleic acid level of 37.7 % in the methanol fraction was reduced significantly to 18 % after heating (52.3 % reduction). The IR and NMR spectra were similar to those of a monoglyceride/diglyceride with NMR spectra indicating a lower amount of olefinic protons for the heated sample. These results showed that the darkening of RBO was due to the oxidation and polymerization of monoglycerides/diglycerides containing linoleic acid/linolenic acid.  相似文献   

7.
Aqueous extraction of oil from rice bran was studied on a laboratory scale and the resulting product was examined. The following process parameters influencing oil extraction were individually investigated: pH of aqueous media, extraction temperature, extraction time, agitation speed and rice bran‐to‐water ratio. Extraction temperature and pH were found to be the main factors influencing oil extraction. The highest oil yield was obtained at pH 12.0, extraction temperature 50 °C, extraction time 30 min, agitation speed 1000 rpm, and rice bran‐to‐water ratio 1.5‐to‐10. The quality of aqueous‐extracted oil in terms of free fatty acid, iodine value and saponification value was similar to a commercial sample of rice bran oil and hexane‐extracted oil, but the peroxide value was higher. Furthermore, the colour of aqueous‐extracted oil was paler than solvent‐extracted oil. © 2000 Society of Chemical Industry  相似文献   

8.
In situ esterifications of high-acidity rice bran oil with methanol and ethanol and with sulfuric acid as catalyst were investigated. In the esterification with methanol, all free fatty acids (FFA) dissolved in methanol were interesterified within 15 min, and it was possible to obtain nearly pure methyl esters. The amount of methyl esters obtained from a given rice bran was dependent on the FFA content of the rice bran oil. In the esterification with ethanol, it was not possible to obtain pure esters as in methanol esterification, because the solubilities of oil components in ethanol were much higher than those in methanol.  相似文献   

9.
Enzymatic process for extracting oil and protein from rice bran   总被引:16,自引:0,他引:16  
Enzymatic extraction of oil and protein from rice bran, using a commercial protease (Alcalase), was investigated and evaluated by response surface methodology. The effect of enzyme concentration was most significant on oil and protein extraction yields, whereas incubation time and temperature had no significant effect. The maximal extraction yields of oil and protein were 79 and 68%, respectively. Further, the quality of oil recovered from the process in terms of free fatty acid, iodine value, and saponification value was comparable with solvent-extracted oil and commercial rice bran oil, but the peroxide value was higher.  相似文献   

10.
The non-edible crude rice bran oil was extracted from white rice bran, and then was catalyzed by immobilized lipase for biodiesel production in this study. The effects of water content, oil/methanol molar ratio, temperature, enzyme amount, solvent,number of methanol added times and two-step methanolysis by using Candida sp. 99-125 as catalyst were investigated. The optimal conditions for processing 1 g rice bran oil were: 0.2 g immobilized lipase, 2 ml n-hexane as solvent, 20% water based on the rice bran oil mass, temperature of 40 °C and two-step addition of methanol. As a result, the fatty acid methyl esters yield was 87.4%. The immobilized lipase was proved to be stable when it was used repeatedly for 7 cycles.  相似文献   

11.
The effect of different processing steps of refining on retention or the availability of oryzanol in refined oil and the oryzanol composition of Indian paddy cultivars and commercial products of the rice bran oil (RBO) industry were investigated. Degumming and dewaxing of crude RBO removed only 1.1 and 5.9% of oryzanol while the alkali treatment removed 93.0 to 94.6% of oryzanol from the original crude oil. Irrespective of the strength of alkali (12 to 20° Be studied), retention of oryzanol in the refined RBO was only 5.4–17.2% for crude oil, 5.9–15.0% for degummed oil, and 7.0 to 9.7% for degummed and dewaxed oil. The oryzanol content of oil extracted from the bran of 18 Indian paddy cultivars ranged from 1.63 to 2.72%, which is the first report of its kind in the literature on oryzanol content. The oryzanol content ranged from 1.1 to 1.74% for physically refined RBO while for alkali-refined oil it was 0.19–0.20%. The oil subjected to physical refining (commercial sample) retained the original amount of oryzanol after refining (1.60 and 1.74%), whereas the chemically refined oil showed a considerably lower amount (0.19%). Thus, the oryzanol, which is lost during the chemical refining process, has been carried into the soapstock. The content of oryzanol of the commercial RBO, soapstock, acid oil, and deodorizer distillate were in the range: 1.7–2.1, 6.3–6.9, 3.3–7.4, and 0.79%, respectively. These results showed that the processing steps—viz., degumming (1.1%), dewaxing (5.9%), physical refining (0%), bleaching and deodorization of the oil—did not affect the content of oryzanol appreciably, while 83–95% of it was lost during alkali refining. The oryzanol composition of crude oil and soapstock as determined by high-performance liquid chromatography indicated 24-methylene cycloartanyl ferulate (30–38%) and campesteryl ferulate (24.4–26.9%) as the major ferulates. The results presented here are probably the first systematic report on oryzanol availability in differently processed RBO, soapstocks, acid oils, and for oils of Indian paddy cultivars.  相似文献   

12.
The inactivation of rice bran lipase was studied in vitro and in vivo using metal ions in methanol or HCl. Lipase was extracted from rice bran in 0.1 M potassium phosphate buffer, pH 7.0 and purified by ammonium sulphate fractionation. The 25–55% ammonium sulphate fraction was subjected to DEAE-cellulose ion exchange chromatography and the fraction (F6) eluted at Ve/Vo of 14.37 was purified about 333-fold. In-vitro studies on F6 lipase showed that Fe3+ and Ni2+ completely inhibited the lipase activity at 5 × 10?5 M concentration, while Zn2+ and Cu2+ did so at 2.5 × 10?4 M. The results on in-vivo inactivation of rice bran lipase showed that Fe3+ and Ni2+ at 200 μg g?1 significantly checked the release of free fatty acids (FFA) from rice bran for 6 days of storage when compared with using concentrated HCl (2%, v/w) only. The triglyceride content of oil was also maximum with Fe3+ and Ni2+ treatment at 200 μg g?1. The present results suggest that Fe3+ and Ni2+ could be effectively used to arrest the release of FFA in rice bran and thus contribute to improving the edible quality of rice bran oil.  相似文献   

13.
In the present study we report the results obtained on the use of rice bran oil (RBO), a naturally occurring nontoxic oil, and its epoxidized variety (epoxidized RBO, or ERBO) in the compounding and vulcanization of different natural rubber–chloroprene rubber (NR–CR) blends. The processability, cure characteristics, and physical properties of the blends prepared with these oils were compared with those of control mixes prepared with aromatic oil. The optimum cure time and scorch time values of the different blends prepared with these oils were found to be lower than those of the respective control blends prepared with aromatic oil. Evaluation of physical properties of the different experimental blends showed that replacement of aromatic oil with these oils did not adversely affect their physical properties. Because RBO contains a good amount of free fatty acids it was tried as a coactivator in addition to its role as a processing aid. The level of these oils required for the blend preparation was optimized in a Brabender plasticorder. Physical properties such as tensile strength, elongation at break, tear strength, swelling index, and abrasion loss, for example, were evaluated for both experimental and control mixes. Comparison of cure characteristics and physical properties of the blends prepared with aromatic oil and with these oils showed that these oils could be used in place of aromatic oil in the above blends. It is also to be noted that aromatic oil is of petroleum origin and is reported to be carcinogenic. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 4084–4092, 2003  相似文献   

14.
A modification of the process of oil extraction from rice bran is proposed, introducing one or two enzymatic reactions previous to solvent extraction. Although a total aqueous enzymatic extraction process did not result in reasonable oil extraction yields, an interesting alternative results from enzymatic reactions previous to solvent extraction or pressing. A thermal treatment of rice bran is first applied to deactivate lipase, but also to gelatinize starch previous to reaction with α-amylase. This is followed by a saccharifying step with glucoamylase to produce glucose (28 g/100 g of rice bran treated), while the residual paste, 66.7% of the original bran, may be subjected to a proteolytic process for protein extraction or directly treated with the solvent to obtain bran oil. Finally, under the defined extraction conditions using hexane, yields of oil are 5% higher when rice bran has been previously treated with α-amylase.  相似文献   

15.
Genetic diversity for lipid content and fatty acid profile in rice bran   总被引:5,自引:0,他引:5  
Rice (Oryza sativa L.) bran contains valuable nutritional constituents, which include lipids with health benefits. A germplasm collection consisting of 204 genetically diverse rice accessions was grown under field conditions and evaluated for total oil content and fatty acid (FA) composition. Genotype effects were highly statistically significant for lipid content and FA profile (P<0.001). Environment (year) significantly affected oil content (P<0.05), as well as stearic, oleic, linoleic, and linolenic acids (all with P<0.01 or lower), but not palmitic acid. The oil content in rice bran varied relatively strongly, ranging from 17.3 to 27.4% (w/w). The major FA in bran oil were palmitic, oleic, and linoleic acids, which were in the ranges of 13.9–22.1, 35.9–49.2, and 27.3–41.0%, respectively. The ratio of saturated to unsaturated FA (S/U ratio) was highly related to the palmitic acid content (r 2=0.97). Japonica lines were characterized by a low palmitic acid content and S/U ratio, whereas Indica lines showed a high palmitic acid content and a high S/U ratio. The variation found suggests it is possible to select for both oil content and FA profile in rice bran.  相似文献   

16.
A comparative nutritive study was made to show that the extent of purification markedly influences the nutritive characteristics of rice bran oil. The coefficient of digestibility was 93.8% when rice bran oil that had been purified by degumming, deacidifying, bleaching and deodorizing was fed to rats; whereas it was 94.8% when extremely pure rice bran oil, which was achieved by including an additional dewaxing step, was used. Rice bran oil without deodorization, but purified by other treatments, showed a 96.2% coefficient of digestibility, which is somewhat lower than that of groundnut oil. However, after a feeding experiment over three months, the highly purified rice bran oil showed better results than the other two purified samples of rice bran oil, and was sometimes better than groundnut oil in terms of total lipid, triglyceride and especially in cholesterol content in serum, liver and heart tissues.  相似文献   

17.
Physical refining of rice bran oil in relation to degumming and dewaxing   总被引:15,自引:7,他引:8  
Physical refining of rice bran oil (RBO) with acidity between 4.0 and 12.4% has been investigated in relation to degumming and dewaxing pretretments. It appears that physical refining after combined low-temperature (10°C) degumming-dewaxing produces good-quality RBO with respect to color, free fatty acid, oryzanol, and tocopherol content.  相似文献   

18.
将双氧水、甲酸和专用催化剂滴加入米糠油中,在三个串联连接的反应釜中用连续法对米糠油进行氧化,产品精制后得到环氧米糠油。产品质量优于用传统方法生产的产品。  相似文献   

19.
The extraction of rice bran oil using the conventional organic solvent‐based Soxhlet method involves hazardous chemicals, whereas supercritical fluid extraction is a costly high‐temperature operating system. The subcritical carbon dioxide Soxhlet (SCDS) system, which operates at a low temperature, was evaluated for the extraction of rice bran oil in this study. In addition, rice bran that had been subjected to steam or hot‐air stabilization were compared with unstabilized rice bran (control). The yields; contents of tocopherols, tocotrienols and oryzanol; fatty acid profiles; and the oxidative stabilities of the extracted rice bran oils were analyzed. The yields using hexane and SCDS extraction were approximately 22 and 13–14.5 %, respectively. However, oil extracted using the SCDS system contained approximately 10 times more oryzanol and tocol compounds and had lower free fatty acid levels and peroxide values compared with hexane‐extracted oil. Overall, SCDS extraction of steamed rice bran represents a promising method to produce premium‐quality rice bran oil.  相似文献   

20.
The residue of fatty acids distillation from rice bran oil soapstock (RFAD-RBOS) is a byproduct from rice bran oil industry. It contains a large amount of γ-oryzanol, which is a valuable antioxidant. The main objective of this work was to investigate the recovery of γ-oryzanol from the RFAD-RBOS using supercritical fluid extraction (SFE). The Soxhlet technique was conducted in order to compare results with SFE. The influence of process parameters over SFE was evaluated in terms of global yield, γ-oryzanol content, γ-oryzanol recovery rate, and fatty acids composition. The mathematical modeling of SFE overall extraction curve (OEC) was also investigated. The condition of 30 MPa/303 K presented the maximum global yield (39 ± 1%, w/w), maximum γ-oryzanol recovery rate (31.3%, w/w), relatively high γ-oryzanol content (3.2%, w/w), and significant presence of monounsaturated and polyunsaturated fatty acids. The logistic model presented the best fit to experimental OEC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号