首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
大豆异黄酮糖苷水解工艺的研究   总被引:2,自引:0,他引:2  
通过正交试验得到了大豆异黄酮糖苷水解为大豆异黄酮苷元的最佳工艺条件。最佳酸法水解工艺条件为:盐酸浓度3 mol/L,水解温度80℃,水解时间180 min,酸法水解率为81.31%;最佳酶法水解工艺条件为:pH 6.0,酶解温度38℃,酶解时间90 min,加酶量为0.9 mg(50 mg糖苷型大豆异黄酮提取物),酶法水解率为82.54%。酶法水解的效果优于酸法水解的效果。  相似文献   

2.
郭咪咪  杨茜  段章群 《中国油脂》2023,48(3):110-115
为充分发挥大豆异黄酮生物价值,采用纤维素酶催化糖苷型大豆异黄酮水解制备游离苷元型大豆异黄酮。通过考察10种纤维素酶对糖苷型大豆异黄酮总水解率和苷元型大豆异黄酮总转化率的影响,筛选得到一种成本较低且水解效果较好的纤维素酶,用于催化水解糖苷型大豆异黄酮,优化了该纤维素酶在水解工艺中底物质量浓度、酶添加量、反应体系pH、酶解温度、酶解时间等参数。结果表明:选择来源于Trichoderma viride的纤维素酶作为大豆异黄酮水解用酶;底物质量浓度0.8~2.0 mg/mL、酶添加量7%~11%、反应体系pH 5.0、酶解温度55℃、酶解时间5~6 h是较经济有效的水解工艺参数,实验优化过程中,大豆异黄酮总水解率超过90%,总转化率接近60%。因此,采用纤维素酶催化水解大豆异黄酮可显著增加游离苷元含量,提高大豆异黄酮利用价值。  相似文献   

3.
周文红 《中国油脂》2020,45(12):100-104
以大豆异黄酮糖苷为原料,酶解制备苷元型大豆异黄酮。以水解率和苷元得率为指标对几种来源的β-葡萄糖苷酶、β-半乳糖苷酶、纤维素酶进行筛选,确定最适酶解用酶。通过单因素实验对酶添加量、底物质量浓度、酶解温度、pH、酶解时间进行优化。结果表明,最佳酶解工艺条件为:采用β-葡萄糖苷酶(300 U/g),酶添加量7%,底物质量浓度1.6 mg/mL,酶解温度56 ℃,pH 4.8,酶解时间6 h。在最佳工艺条件下,大豆异黄酮糖苷的水解率及苷元得率分别达到96.84%和99.74%。  相似文献   

4.
大豆异黄酮水解物的制备   总被引:1,自引:0,他引:1  
利用黑曲霉产酶发酵培养基制备β-葡萄糖苷酶,再利用β-葡萄糖苷酶水解大豆异黄酮粉制备异黄酮苷元。研究结果表明,较优产酶发酵培养基的C/N为6∶4,加水量1.4倍,培养基中不添加诱导物。水解500 mg40%大豆异黄酮粉的最佳条件为:加酶量100 U,水解温度50℃,水解时间1 h。  相似文献   

5.
以低纯度商品大豆异黄酮为原料,利用酸水解法、超声波辅助酸水解法及酶水解法制备高纯度大豆异黄酮甙元产品。通过实验,比较这三种水解制备方法水解率、产品回收率和产品纯度,并对制备得到产品进行成分分析,选择出较佳制备高纯度大豆异黄酮甙元方法。实验结果表明,采用β―葡萄糖苷酶水解分离纯化工艺制备大豆异黄酮甙元产品,操作简单,安全环保,其产品得率、异黄酮回收率和产品纯度分别为15.1%、77.1%和92.7%,分离纯化效果较理想。  相似文献   

6.
《食品与发酵工业》2017,(6):208-212
采用红曲老醋浸泡大豆,对大豆自身的内源性β-葡萄糖苷酶(β-glucosidase,E.C.3.2.1.21,BG)促进大豆中异黄酮的转化进行研究。用合成底物p-硝基苯基-β-D-吡喃葡萄糖苷测定大豆BG酶活,高效液相色谱法测定大豆异黄酮的含量。结果表明,随着浸泡时间的延长,大豆BG酶活呈先上升后下降的趋势,浸泡4 h时酶活达到最高为0.74 U/g。在内源BG酶解和酸解的共同作用下,结合型异黄酮的糖苷逐渐被水解,其中丙二酰基葡萄糖苷型和β-葡萄糖苷型含量显著下降,分别降低47.39%和36.27%;苷元含量显著上升,增加12倍。食醋浸泡有利于提高大豆的生物效价。  相似文献   

7.
弱碱水解丙二酰基型大豆异黄酮的研究   总被引:1,自引:0,他引:1  
本实验采用碱法将丙二酰基大豆异黄酮水解为葡萄糖苷型大豆异黄酮。通过正交实验得到最佳碱水解条件为:PH=11.0,水解温度65℃,水解时间1h。水解前样品中大豆异黄酮的含量分别是:D:16.12%,G:14.49%,MD:33.62%,MG:35.77%,水解后样品中大豆异黄酮的含量分别是:D:46.86%,G:47.34%,MG:5.80%,MD:nd。  相似文献   

8.
糖苷型大豆异黄酮酸水解工艺的研究   总被引:13,自引:0,他引:13  
通过正交实验确立了糖苷型大豆异黄酮转化为游离型大豆异黄酮的最佳酸水解工艺条件:盐酸甲醇溶液的浓为2mol/L,水解温度为80℃水解时间为60min。水解前样品中大豆异黄酮的含量为D:13.86%、G:23.48%、De:0.22%、Ge:0.02%,水解后样品中大豆异黄酮的含量为D:nD(未检出)、G:nd(未检出)、De:14.01%、Ge:23.45%,水解充分。  相似文献   

9.
酶水解对大豆异黄酮粗提物中苷元含量的影响   总被引:2,自引:0,他引:2  
采用β-葡萄糖苷酶水解的方法将大豆异黄酮糖苷转化为苷元,以染料木素和大豆苷元含量为指标,通过单因素试验对水解过程中的不同影响因素进行了考察。以染料木素含量为指标,运用正交试验优化了β-葡萄糖苷酶水解大豆异黄酮的工艺条件为反应温度40℃、水解时间1.5h、水解介质pH4.5、水解底物浓度10mg/mL,在此条件下,水解得到的大豆异黄酮苷元中染料木素的含量可达到22.91%。  相似文献   

10.
用发酵黑曲霉得到的β-葡萄糖苷酶水解40%的大豆异黄酮粉,通过正交实验确定最佳水解条件为:加酶量100u,底物浓度20mg/mL,50℃,水解1h。将水解液降温至4℃,4000r/min离心分离30min,离心后沉淀物在-18℃下预冻,于-40℃冷冻干燥,得到固态大豆异黄酮苷元,经检测苷元转化率90.12%、大豆皂苷3.87%、大豆异黄酮94.36%、大豆苷元43.45%、染料木素46.26%。放大实验结果:苷元转化率78.56%、大豆皂苷4.93%、大豆异黄酮88.97%、大豆苷元36.47%、染料木素38.81%。  相似文献   

11.
在单因素试验基础上,利用响应面分析(response surface analysis,RSA)法中Plackett-Burman和Box-Behnken进行设计,得出β-葡萄糖苷酶水解大豆异黄酮物质的最佳条件为:水解时间55 min,水解温度57℃,pH3.5.在最佳条件下,用β-葡萄糖苷酶水解大豆异黄酮得到大豆苷元,其得率达到39.05%.  相似文献   

12.
以低纯度商品大豆异黄酮为原料,利用超声波辅助酸水解技术制备高纯度大豆异黄酮甙元产品。通过实验,比较系统深入研究超声波功率、超声波处理时间、反应温度、水解酸度等因素对水解效果影响,并最终得到超声波辅助水解最佳工艺参数。实验结果表明,超声波处理对大豆异黄酮甙水解有一定促进作用,超声波辅助水解大豆异黄酮最佳工艺条件为:超声波功率80W,水解时间1h,反应温度70℃,酸度为1M;通过超声波辅助水解提取后,所得产品纯度由原来25.3%提高至93.20%。  相似文献   

13.
腐乳发酵过程中大豆异黄酮变化的研究   总被引:8,自引:0,他引:8  
以东北产大豆为原料,利用雅致放射毛霉(AS3.2278)菌株,研究了腐乳发酵过程中异黄酮总量和成分的变化。高效液相色谱检测结果表明:腐乳发酵过程中异黄酮糖甙含量降低,异黄酮甙原含量升高,后酵50 d 腐乳中总甙原含量约为白坯中的20倍。在6%食盐的条件下,发酵过程中染料木酮甙酶解速度高过黄豆甙,在后酵30d染料木酮和黄豆甙原含量分别达到局部峰值191.24μg/g(干物质)和106.65μg/g(干物质)。  相似文献   

14.
超声波酸水解法提取豆渣中异黄酮条件优化   总被引:1,自引:0,他引:1  
徐渐  江连洲  穆莹 《食品工业科技》2012,33(13):253-256
目的:对水酶法提取大豆油后的副产物进行研究,提取其生理活性物质大豆异黄酮。方法:采用超声方法和酸水解方法相结合对水酶法提取大豆油副产物进行异黄酮提取,在此基础上进行响应面优化,确定最佳提取工艺。结果:分析了影响异黄酮提取的各种因素,并予以优化。优化后工艺条件为:料液比为1:12.54,乙醇浓度为70.28%,盐酸浓度为2.6mol/L,水解提取时间为30min,提取温度为30℃。结论:超声波和酸水解的方法适用于水酶法提取油后豆渣中大豆异黄酮的提取,在加入酸水解后大豆异黄酮总提取量较单纯70%乙醇提取法提高42.55%。  相似文献   

15.
制备大豆异黄酮苷的方法   总被引:2,自引:0,他引:2  
本文论述了大豆异黄酮糖苷的不同水解方法,并对其各自的原理,工艺路线和工艺特点进行了比较,提出了水解大豆异黄酮糖苷的最好方法是酶水解法,是一种绿色无污染的技术,采用微生物发酵法既经济又实用,是大豆异黄酮生产厂家产品开发的新思路。  相似文献   

16.
研究了大豆发芽期间氨基酸、γ-氨基丁酸、大豆异黄酮、水分、总糖、可溶性蛋白质以及粗脂肪的含量变化.结果表明,大豆发芽48h时总游离氨基酸含量明显增加,水解氨基酸的含量略有增加但变化不明显;总糖、粗脂肪含量降低;水分含量升高;γ-氨基丁酸、大豆异黄酮等功能性因子含量都有明显提高,其中,发芽48h的大豆中γ-氨基丁酸的含量是干大豆的700%,发芽48h的大豆中大豆异黄酮的含量是干大豆的191.2%.  相似文献   

17.
酶法水解大豆异黄酮   总被引:25,自引:1,他引:25  
利用Absidiasp R菌株 ,通过液体发酵 ,得到了一种高活性的大豆异黄酮糖苷水解酶 ,该酶水解糖苷型大豆异黄酮的最适底物浓度为 7 5mg/mL ;最适反应时间为 1 5h ;该酶在温度为 2 0~5 0℃、pH为 4 0~ 7 0范围内相对稳定 ,最适酶解反应温度为 40℃ ,最适pH值为 5 0 ;金属离子对该酶活力的影响不显著 ,其中Co2 +、Zn2 +对该酶有激活作用 ,Ag+、Cu2 +对该酶有抑制作用 ,Fe3+浓度<5 0mmol/L时 ,对该酶有促进作用 ,当离子浓度 >5 0mmol/L时 ,则有抑制作用。利用实验获得的最适酶解条件反应 ,可使染料木苷生成染料木素的转化率达到 1 0 0 %。  相似文献   

18.
该研究建立大豆提取物中大豆异黄酮高效液相色谱测定方法,通过正交实验确立糖苷型大豆异黄酮转化为游离型大豆异黄酮最佳酸水解工艺条件:盐酸浓度为2.0 mol/L,水解温度为80℃, 水解时间为1.5 h;采用ZorbaX 80A Extend-C18 4.6×150 mm 4 μm色谱柱,MeOH-1.8%冰乙酸水溶液(35:65,V/V)为流动相,MeOH 35%-50%梯度洗脱,流速1.0 ml/min,检测波长为260nm等色谱条件下测定甙元含量,并通过换算因子计算大豆异黄酮含量。  相似文献   

19.
米蛋白肽铁的螯合条件优化   总被引:3,自引:1,他引:3  
以米渣为蛋白肽原料,以FeSO4为铁源制备蛋白肽螯合铁。通过实验确定用复合胰蛋白酶进行限制性酶解,用酶量为1%,理想的酶解工艺条件:酶解温度50℃,固液比1∶5,pH为8,酶解时间4h;通过单因素实验和正交实验,采用氮气保护措施,确定了最佳螯合工艺条件:蛋白肽与亚铁盐的配体摩尔比为2∶1,pH为5.0,反应温度50℃,反应时间40min。可得到棕灰色粉末状蛋白肽螯合铁,螯合率为94.4%。  相似文献   

20.
高效液相色谱法测定大豆提取物中大豆异黄酮的含量   总被引:44,自引:2,他引:44  
本文建立了大豆提取物中大豆异黄酮的高效液相色谱测定方法,通过正交试验了样品水解最佳条件为1.0mol/l HCl-MeOH溶解,80℃下,回流水解0.5h,采用Nova-Pak C18 3.9*10mm4μm色谱柱MeOH-0.4%H3PO4(47:53V/V)为流动相,流速0.7ml/min检测波长260nm等色谱条件下测定甙元含量,通过换算因子计算大豆异黄酮的含量。该方法快速,灵敏、重理性好,  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号