首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Li2CoSiO4 has been prepared successfully by a solution route or hydrothermal reaction for the first time, and its electrochemical performance has been investigated primarily. Reversible extraction and insertion of lithium from and into Li2CoSiO4 at 4.1 V versus lithium have shown that this material is a potential candidate for the cathode in lithium ion batteries. At this stage reversible electrochemical extraction was limited to 0.46 lithium per formula unit for the Li2CoSiO4/C composite materials, with a charge capacity of 234 mAh g−1 and a discharge capacity of 75 mAh g−1.  相似文献   

2.
A high capacity Li2MnSiO4/C nanocomposite cathode material with good rate performance for lithium ion batteries through a solution route has been successfully prepared. The material is able to deliver a reversible capacity of 209 mAh g−1 in the first cycle, i.e. more than one electron exchange can be reversible cycled in the materials. The highly dispersion of nanocrystalline Li2MnSiO4 which was surround by a thin film of carbon was attributed to the cause of excellent performance of the materials. Ex situ XRD and IR results show that poor cycling behavior of Li2MnSiO4 might be due to an amorphization process of the materials.  相似文献   

3.
Novel multi-component molten salt systems containing iodides, LiF–LiBr–LiI, LiF–NaBr–LiI, and LiF–LiCl–LiBr–LiI, were investigated for use as electrolytes in high temperature molten salt batteries to improve the discharge rate-capability. The iodide-based molten salts showed higher ionic conductivity (3 S cm−1 at 500 °C) than conventional LiCl–KCl, and had low enough melting points (below 400 °C) that can be used in practical high temperature molten salt batteries. The iodide-based salts showed instability at temperatures higher than 280 °C in dried air. The decomposition mechanism of iodide-based molten salts was discussed, and it was found that elimination of oxygen from the environment is effective to stabilize the iodide-based molten salts at high temperatures.  相似文献   

4.
The electrochemical behaviors of LiPF6 and lithium oxalyldifluoroborate (LiODFB) blend salts in ethylene carbonate + propylene carbonate + dimethyl carbonate (EC + PC + DMC, 1:1:3, v/v/v) for LiFePO4/artificial graphite (AG) lithium-ion cells have been investigated in this work. It is demonstrated by conductivity test that LiPF6 and LiODFB blend salts electrolytes have superior conductivity to pure LiODFB-based electrolyte. The results show that the performances of LiFePO4/Li half cells with LiPF6 and LiODFB blend salts electrolytes are inferior to pure LiPF6-based electrolyte, the capacity and cycling efficiency of Li/AG half cells are distinctly improved by blend salts electrolytes, and the optimum LiODFB/LiPF6 molar ratio is around 4:1. A reduction peak is observed around 1.5 V in LiODFB containing electrolyte systems by means of CV tests for Li/AG cells. Excellent capacity and cycling performance are obtained on LiFePO4/AG 063048-type cells tests with blend salts electrolytes. A plateau near 1.7-2.0 V is shown in electrolytes containing LiODFB salt, and extends with increasing LiODFB concentration in charge curve of LiFePO4/AG cells. At 1C discharge current rate, the initial discharge capacity of 063048-type cell with the optimum electrolyte is 376.0 mAh, and the capacity retention is 90.8% after 100 cycles at 25 °C. When at 65 °C, the capacity and capacity retention after 100 cycles are 351.3 mAh and 88.7%, respectively. The performances of LiFePO4/AG cells are remarkably improved by blending LiODFB and LiPF6 salts compared to those of pure LiPF6-based electrolyte system, especially at elevated temperature to 65 °C.  相似文献   

5.
The fast ionic conducting structure similar to thio-Lithium Super Ionic Conductor (LISICON) phase is synthesized in the Li2S-P2S5 system. The Li2S-P2S5 glass-ceramics with the composition of xLi2S·(100−x)P2S5 (75 ≤ x ≤ 80) are prepared by the heat-treatment of mechanically milled amorphous sulfide powders. In the binary Li2S-P2S5 system, 78.3Li2S·21.7P2S5 glass ceramic prepared by mechanical milling and subsequent heat-treatment at 260 °C for 3 h shows the highest conductivity of 6.3 × 10−4 S cm−1 at room temperature and the lowest activation energy for conduction of 30.5 kJ mol−1. The enhancement of conductivity with increasing x up to 78.3 is probably caused by the introduction of interstitial lithium ions at the Li sites which affects the Li ion distribution. The prepared electrolyte exhibits the lithium ion transport number of almost unity and voltage stability of 5 V vs. Li at room temperature.  相似文献   

6.
A novel CuO-nanotubes/SnO2 composite was prepared by a facile solution method and its electrochemical properties were investigated as the anode material for Li-ion battery. The as-prepared composite consisted of monoclinic-phase CuO-nanotubes and cassiterite structure SnO2 nanoparticles, in which SnO2 nanoparticles were dramatically decorated on the CuO-nanotubes. The composite showed higher reversible capacity, better durability and high rate performance than the pure SnO2. The better electrochemical performance could be attributed to the introducing of the CuO-nanotubes. It was found that the CuO-nanotubes were reduced to metallic Cu in the first discharge cycle, which can retain tube structure of the CuO-nanotubes as a tube buffer to alleviate the volume expansion of SnO2 during cycling and act as a good conductor to improve the electrical conductivity of the electrodes.  相似文献   

7.
All-solid-state lithium secondary batteries using LiCoO2 particles coated with amorphous Li2O-TiO2 films as an active material and Li2S-P2S5 glass-ceramics as a solid electrolyte were fabricated; the electrochemical performance of the batteries was investigated. The interfacial resistance between LiCoO2 and solid electrolyte was decreased by the coating of Li2O-TiO2 films on LiCoO2 particles. The rate capability of the batteries using the LiCoO2 coated with Li2Ti2O5 (Li2O·2TiO2) film was improved because of the decrease of the interfacial resistance of the batteries. The cycle performance of the all-solid-state batteries under a high cutoff voltage of 4.6 V vs. Li was highly improved by using LiCoO2 coated with Li2Ti2O5 film. The oxide coatings are effective in suppressing the resistance increase between LiCoO2 and the solid electrolyte during cycling. The battery with the LiCoO2 coated with Li2Ti2O5 film showed a large initial discharge capacity of 130 mAh/g and good capacity retention without resistance increase after 50 cycles at the current density of 0.13 mA/cm2.  相似文献   

8.
The carbon coated monoclinic Li3V2(PO4)3 (LVP/C) powder is successfully synthesized by a carbothermal reduction method using crystal sugar as the carbon source. Its structure and physicochemical properties are investigated using X-ray diffraction (XRD), scanning electron microscopy, high-resolution transmission electron microscopy and electrochemical methods. The LVP/C electrode exhibits stable reversible capacities of 203 and 102 mAh g−1 in the potential ranges of 3.0-0.0 V and 3.0-1.0 V versus Li+/Li, respectively. It is identified that the insertion/extraction of Li+ undergoes a series of two-phase transition processes between 3.0 and 1.6 V and a single phase process between 1.6 and 0.0 V. The ex situ XRD patterns of the electrodes at various lithiated states indicate that the monoclinic structure can still be retained during charge-discharge process and the insertion/deinsertion of lithium ions occur reversibly, which provides an excellent cycling stability with high energy efficiency.  相似文献   

9.
Attempts to dope Zn2+, Cu2+ or Ni2+ are made for Li2FeSiO4. The effects of dopant on the physical and electrochemical characteristics of Li2FeSiO4 were investigated. Zn2+ successfully entered into the lattice of Li2FeSiO4 and induced the change of lattice parameters. Compared with the undoped Li2FeSiO4, Li2Fe0.97Zn0.03SiO4 has higher discharge capacity, better electrochemical reversibility and lower electrode polarization. The improved electrochemical performance of Li2Fe0.97Zn0.03SiO4 can be attributed to the improved structural stability and the enhanced lithium ion diffusivity brought about by Zn2+ doping. However, Ni2+ and Cu2+ cannot be doped into the lattice of Li2FeSiO4. Cu and NiO are formed as impurities in the Cu- and Ni-containing samples, respectively. Compared with the undoped Li2FeSiO4, the Cu- and Ni-containing samples have lower capacities and higher electrochemical polarization.  相似文献   

10.
Glass-ceramic and glass Li2S-GeSe2-P2S5 electrolytes were prepared by a single step ball milling (SSBM) process. Various compositions of Li4−xGe1−xPxS2(1+x)Se2(1−x) with/without heat treatment (HT) from x = 0.55 to x = 1.00 were systematically investigated. Structural analysis by X-ray diffraction (XRD) showed gradual increase of the lattice constant followed by significant phase change with increasing GeSe2. HT also affected the crystallinity. Incorporation of GeSe2 in Li2S-P2S5 kept high conductivity with a maximum value of 1.4 × 10−3 S cm−1 at room temperature for x = 0.95 in Li4−xGe1−xPxS2(1+x)Se2(1−x) without HT. All-solid-state LiCoO2/Li cells using Li2S-GeSe2-P2S5 as solid-state electrolytes (SE) were tested by constant-current constant-voltage (CCCV) charge-discharge cycling at a current density of 50 μA cm−2 between 2.5 and 4.3 V (vs. Li/Li+). In spite of the extremely high conductivity of the SE, LiCoO2/Li cells showed a large irreversible reaction especially during the first charging cycle. LiCoO2 with SEs heat-treated at elevated temperature exhibited a capacity over 100 mAh g−1 at the second cycle and consistently improved cycle retention, which is believed to be due to the better interfacial stability.  相似文献   

11.
Plate-like Li3V2(PO4)3/C composite is synthesized via a solution route followed by solid-state reaction. The Li3V2(PO4)3/C plates are 40-100 nm in thicknesses and 2-10 μm in lengths. TEM images show that a uniform carbon layer with a thickness of 5.3 nm presents on the surfaces of Li3V2(PO4)3 plates. The apparent Li-ion diffusion coefficient of the plate-like Li3V2(PO4)3/C is calculated to be 2.7 × 10−8 cm2 s−1. At a charge-discharge rate of 3 C, the plate-like Li3V2(PO4)3/C exhibits an initial discharge capacity of 125.2 and 133.1 mAh g−1 in the voltage ranges of 3.0-4.3 and 3.0-4.8 V, respectively. After 500 cycles, the electrodes still can deliver a discharge capacity of 111.8 and 97.8 mAh g−1 correspondingly, showing a good cycling stability.  相似文献   

12.
We report a simple strategy to prepare a hybrid of lithium titanate (Li4Ti5O12, LTO) nanoparticles well-dispersed on electrical conductive graphene nanosheets as an anode material for high rate lithium ion batteries. Lithium ion transport is facilitated by making pure phase Li4Ti5O12 particles in a nanosize to shorten the ion transport path. Electron transport is improved by forming a conductive graphene network throughout the insulating Li4Ti5O12 nanoparticles. The charge transfer resistance at the particle/electrolyte interface is reduced from 53.9 Ω to 36.2 Ω and the peak currents measured by a cyclic voltammogram are increased at each scan rate. The difference between charge and discharge plateau potentials becomes much smaller at all discharge rates because of lowered polarization. With 5 wt.% graphene, the hybrid materials deliver a specific capacity of 122 mAh g−1 even at a very high charge/discharge rate of 30 C and exhibit an excellent cycling performance, with the first discharge capacity of 132.2 mAh g−1 and less than 6% discharge capacity loss over 300 cycles at 20 C. The outstanding electrochemical performance and acceptable initial columbic efficiency of the nano-Li4Ti5O12/graphene hybrid with 5 wt.% graphene make it a promising anode material for high rate lithium ion batteries.  相似文献   

13.
The structural characterization and properties of lithium difluoro(oxalato)borate (LiDFOB) are reported. LiDFOB was synthesized as previously described in the literature via direct reaction of boron trifluoride diethyl etherate with lithium oxalate. The crystal structure of the salt was determined from single crystal X-ray diffraction yielding a highly symmetric orthorhombic structure (Cmcm, a = 6.2623(8) Å, b = 11.4366(14) Å, c = 6.3002(7) Å, V = 451.22(9) Å3, Z = 4 at 110 K). Single crystal X-ray diffraction of a dihydrate of LiDFOB yielded a monoclinic structure (P21/c, a = 9.5580(3) Å, b = 12.7162(4) Å, c = 5.4387(2) Å, V = 634.63(4) Å3, Z = 4 at 110 K). Along with the crystal structures, additional structural information and the properties of LiDFOB (via 11B and 19F NMR, DSC, TGA and Raman spectroscopy) have been compared with those of LiBF4 and LiBOB to better understand the differences between these lithium battery electrolyte salts.  相似文献   

14.
New glyme-Li salt complexes were prepared by mixing equimolar amounts of a novel cyclic imide lithium salt LiN(C2F4S2O4) (LiCTFSI) and a glyme (triglyme (G3) or tetraglyme (G4)). The glyme-Li salt complexes, [Li(G3)][CTFSI] and [Li(G4)][CTFSI], are solid and liquid, respectively, at room temperature. The thermal stability of [Li(G4)][CTFSI] is much higher than that of pure G4, and the vapor pressure of [Li(G4)][CTFSI] is negligible at temperatures lower than 100 °C. Although the viscosity of [Li(G4)][CTFSI] is high (132.0 mPa s at 30 °C), because of its high molar concentration (ca. 3 mol dm−3), its ionic conductivity at 30 °C is relatively high, i.e., 0.8 mS cm−1, which is slightly lower than that of a conventional organic electrolyte solution (1 mol dm−3 LiTFSI dissolved in propylene carbonate). The self-diffusion coefficients of a Li+ cation, a CTFSI anion, and a glyme molecule were measured by the pulsed gradient spin-echo NMR method (PGSE-NMR). The ionicity (dissociativity) of [Li(G4)][CTFSI] at 30 °C is ca. 0.5, as estimated from the PGSE-NMR diffusivity measurements and the ionic conductivity measurements. Results of linear sweep voltammetry revealed that [Li(G4)][CTFSI] is electrochemically stable in an electrode potential range of 0-4.5 V vs. Li/Li+. The reversible deposition-stripping behavior of lithium was observed by cyclic voltammetry. The [LiCoO2|[Li(G4)][CTFSI]|Li metal] cell showed a stable charge-discharge cycling behavior during 50 cycles, indicating that the [Li(G4)][CTFSI] complex is applicable to a 4 V class lithium secondary battery.  相似文献   

15.
Sn/Li2O composite coatings on stainless steel substrate, as anodes of thin-film lithium battery are carried out in SnCl2 and LiNO3 mixed solutions by using cathodic electrochemical synthesis and subsequently annealed at 200 °C. Through cathodic polarization tests, three major regions are verified: (I) O2 + 4H+ + 4e → 2H2O (∼0.25 to −0.5 V), (II) 2H+ + 2e → H2, Sn2+ + 2e → Sn, and NO3 + H2O + 2e → NO2 + 2OH (−0.5 to −1.34 V), and (III) 2H2O + 2e → H2 + 2OH (−1.34 to −2 V vs. Ag/AgCl). The coated specimens are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV), and charge/discharge tests. The nano-sized Sn particles embedded in Li2O matrix are obtained at the lower part of region II such as −1.2 V, while the micro-sized Sn with little Li2O at the upper part, such as −0.7 V. Charge/discharge cycle tests elucidated that Sn/Li2O composite film showed better cycle performance than Sn or SnO2 film, due to the retarding effects of amorphous Li2O on the further aggregation of Sn particles. On the other hand, the one tested for cut-off voltage at 0.9 V (vs. Li/Li+) is better than those at 1.2 and 1.5 V since the incomplete de-alloy at lower cut-off voltage may inhibit the coarsening of Sn particles, revealing capacity 587 mAh g−1 after 50 cycle, and capacity retention ratio C50/C2 81.6%, higher than 63.5% and 49.1% at 1.2 and 1.5 V (vs. Li/Li+), respectively.  相似文献   

16.
Allyl tris(2,2,2-trifluoroethyl) carbonate (ATFEC) was synthesized as a bi-functional additive of flame retardant and film former in electrolytes for lithium ion batteries (LIBs). The flame retardancy of the additive was characterized with differential scanning calorimetry (DSC) and self-extinguishing time (SET). It is shown that adding 1 vol.% ATFEC in 1 M LiPF6/propylene carbonate (PC) can effectively enhance the thermal stability of the electrolyte and suppress the co-intercalation of PC into the graphitic anode. Further evaluation indicates that the additive hardly affect the conductivity of electrolyte. These support the feasibility of using ATFEC as an additive on formulating an electrolyte with multiple functions such as film-forming enhancement, high thermal stability and high ionic conductivity.  相似文献   

17.
Electrode-electrolyte composite materials were prepared by coating a highly conductive Li2S-P2S5 solid electrolyte onto LiCoO2 electrode particles using pulsed laser deposition (PLD). Cross-sections of the composite electrode layers of the all-solid-state cells were observed using a transmission electron microscope to investigate the packing morphology of the LiCoO2 particles and the distribution of solid electrolyte in the composite electrode. All-solid-state cells based on a composite electrode composed entirely of solid-electrolyte-coated LiCoO2 were fabricated, and their performance was investigated. The coating amounts of Li2S-P2S5 solid electrolytes on LiCoO2 particles and the conductivity of the coating material were controlled to increase the capacity of the resulting all-solid-state cells. All-solid-state cells using LiCoO2 with thick solid electrolyte coatings, grown over 120 min, had a capacity of 65 mAh g−1, without any addition of Li2S-P2S5 solid electrolyte particles to the composite electrode. The capacity of the all-solid-state cell increased further after increasing the conductivity of the Li2S-P2S5 solid electrolyte coating by heat treatment at 200 °C. Furthermore, an all-solid-state cell based on a composite electrode using both a solid electrolyte coating and added solid electrolyte particles was fabricated, and the capacity of the resulting all-solid-state cell increased to 95 mAh g−1.  相似文献   

18.
Spherical Li3V2(PO4)3/C composites are synthesized by a soft chemistry route using hydrazine hydrate as the spheroidizing medium. The electrochemical properties of the materials are investigated by galvanostatic charge-discharge tests, cyclic voltammograms and electrochemical impedance spectrum. The porous Li3V2(PO4)3/C spheres exhibit better electrochemical performances than the solid ones. The spherical porous Li3V2(PO4)3/C electrode shows a high discharge capacity of 129.1 and 125.6 mAh g−1 between 3.0 and 4.3 V, and 183.8 and 160.9 mAh g−1 between 3.0 and 4.8 V at 0.2 and 1 C, respectively. Even at a charge-discharge rate of 15 C, this material can still deliver a discharge capacity of 100.5 and 121.5 mAh g−1 in the potential regions of 3.0-4.3 V and 3.0-4.8 V, respectively. The excellent electrochemical performance can be attributed to the porous structure, which can make the lithium ion diffusion and electron transfer more easily across the Li3V2(PO4)3/electrolyte interfaces, thus resulting in enhanced electrode reaction kinetics and improved electrochemical performance.  相似文献   

19.
The Li2S–Cu composite electrode materials were prepared by mechanical milling and applied to all-solid-state lithium cells using the Li2S–P2S5 glass–ceramic electrolyte. The addition of Cu and the mechanical activation improved the electrochemical performance of Li2S in all-solid-state cells. The In/Li2S–Cu cells were charged and then discharged at room temperature, suggesting that Li2S was utilized as a lithium source. The cells exhibited high discharge capacity of about 490 mAh g−1 at the 1st cycle. The SEM and EDX analyses suggested that the amorphous LixCuS domain was partially formed by milling, and the domain played an important role in the improvement of capacity. The electrochemical reaction mechanism of the Li2S–Cu composites was discussed on the basis of the mechanism of the S–Cu composite electrode.  相似文献   

20.
Rate capability of LiNi0.8Co0.15Al0.05O2 in solid-state cells was investigated with 70Li2S-30P2S5 glass-ceramics as a sulfide solid electrolyte. It showed higher rate capability than LiCoO2; discharge capacity observed at a current density of 10 mA cm−2 was ca. 70 mAh g−1. Surface coating with Li4Ti5O12 onto the LiNi0.8Co0.15Al0.05O2 particles further improved the high-rate performance to give ca. 110 mAh g−1. The rate capability promises to realize all-solid-state lithium secondary batteries with very high performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号