首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A magnetite (Fe3O4) powder composed of uniform sub-micrometer spherical particles has been successfully synthesized by a hydrothermal method at low temperature. X-ray diffraction, scanning electron microscopy, transmission electron microscopy and galvanostatic cell cycling are employed to characterize the structure and electrochemical performance of the as-prepared Fe3O4 spheroids. The magnetite shows a stable and reversible capacity of over 900 mAh g−1 during up to 60 cycles and good rate capability. The experimental results suggest that the Fe3O4 synthesized by this method is a promising anode material for high energy-density lithium-ion batteries.  相似文献   

2.
Spherical Li3V2(PO4)3/C composites are synthesized by a soft chemistry route using hydrazine hydrate as the spheroidizing medium. The electrochemical properties of the materials are investigated by galvanostatic charge-discharge tests, cyclic voltammograms and electrochemical impedance spectrum. The porous Li3V2(PO4)3/C spheres exhibit better electrochemical performances than the solid ones. The spherical porous Li3V2(PO4)3/C electrode shows a high discharge capacity of 129.1 and 125.6 mAh g−1 between 3.0 and 4.3 V, and 183.8 and 160.9 mAh g−1 between 3.0 and 4.8 V at 0.2 and 1 C, respectively. Even at a charge-discharge rate of 15 C, this material can still deliver a discharge capacity of 100.5 and 121.5 mAh g−1 in the potential regions of 3.0-4.3 V and 3.0-4.8 V, respectively. The excellent electrochemical performance can be attributed to the porous structure, which can make the lithium ion diffusion and electron transfer more easily across the Li3V2(PO4)3/electrolyte interfaces, thus resulting in enhanced electrode reaction kinetics and improved electrochemical performance.  相似文献   

3.
Li4Ti5O12/tin phase composites are successfully prepared by cellulose-assisted combustion synthesis of Li4Ti5O12 matrix and precipitation of the tin phase. The effect of firing temperature on the particulate morphologies, particle size, specific surface area and electrochemical performance of Li4Ti5O12/tin oxide composites is systematically investigated by SEM, XRD, TG, BET and charge-discharge characterizations. The grain growth of tin phase is suppressed by forming composite with Li4Ti5O12 at a calcination of 500 °C, due to the steric effect of Li4Ti5O12 and chemical interaction between Li4Ti5O12 and tin oxide. The experimental results indicate that Li4Ti5O12/tin phase composite fired at 500 °C has the best electrochemical performance. A capacity of 224 mAh g−1 is maintained after 50 cycles at 100 mA g−1 current density, which is still higher than 195 mAh g−1 for the pure Li4Ti5O12 after the same charge/discharge cycles. It suggests Li4Ti5O12/tin phase composite may be a potential anode of lithium-ion batteries through optimizing the synthesis process.  相似文献   

4.
The carbon coated monoclinic Li3V2(PO4)3 (LVP/C) powder is successfully synthesized by a carbothermal reduction method using crystal sugar as the carbon source. Its structure and physicochemical properties are investigated using X-ray diffraction (XRD), scanning electron microscopy, high-resolution transmission electron microscopy and electrochemical methods. The LVP/C electrode exhibits stable reversible capacities of 203 and 102 mAh g−1 in the potential ranges of 3.0-0.0 V and 3.0-1.0 V versus Li+/Li, respectively. It is identified that the insertion/extraction of Li+ undergoes a series of two-phase transition processes between 3.0 and 1.6 V and a single phase process between 1.6 and 0.0 V. The ex situ XRD patterns of the electrodes at various lithiated states indicate that the monoclinic structure can still be retained during charge-discharge process and the insertion/deinsertion of lithium ions occur reversibly, which provides an excellent cycling stability with high energy efficiency.  相似文献   

5.
Carbon-based nanofibers can be used as anode materials for lithium-ion batteries. Both pure carbon nanofiber and C/Fe3O4 composite nanofibers were prepared by electrospinning and subsequent carbonization processes. The composition and structures were characterized by Fourier transformation infrared spectroscopy, X-ray diffraction, scanning and transmission electron microscopy. The electrochemical properties were evaluated in coin-type cells versus metallic lithium. It is found that after an annealing temperature of 500–700 °C, the carbon has disordered structure while Fe3O4 is nanocrystalline with a particle size from 8.5 to 52 nm. Compared with the pure carbon nanofiber, the 600 °C-carbonized C/Fe3O4 composite nanofiber exhibits much better electrochemical performance with a high reversible capacity of 1007 mAh g−1 at the 80th cycle and excellent rate capability. A beneficial powderization phenomenon is discovered during the electrochemical cycling. This study suggests that the optimized C/Fe3O4 composite nanofiber is a promising anode material for high performance lithium-ion batteries.  相似文献   

6.
Combine SnO2 nanoparticles with some conductive carbonaceous materials has been regarded as one of the most effective strategies to solve the problems of poor conductivity and volume change. In this work, a SnO2/sulfonated graphene composite with 3D interpenetrating porous structure (3D SnO2/SG) was synthesized. The elaborate designed 3D SG structure not only generates an excellent electronic conductivity, but also buffers the volume expansion of the SnO2 particles. As a result, the desirable 3D possesses enhanced performance when used as anode material in lithium battery. For example, the electrochemical results showed that the 3D SnO2/SG presents a high reversible specific capacity (928.5 mA h g?1 at the current density of 200 mA g?1). Even after 120 cycles, the specific capacity of 679.7 mA h g?1 (at the current density of 400 mA g?1) are still maintained.  相似文献   

7.
Cobalt oxide thin films composed of hollow spherical Co3O4 particles have been prepared by a two-step method. The first step involves in the synthesis of hollow cobalt alkoxide particles in a stable suspension from mixed polyalcohol solutions of cobalt acetate in oil bath at 170 °C. The second step includes the thin film fabrication by electrostatic spray deposition (ESD) and subsequent heat treatment in nitrogen. The obtained Co3O4 films with the unique hollow particle microstructure exhibit high reversible capacity of above 1000 mAh g−1 during up to 50 cycles and good rate capability. The films are promising negative electrodes for high energy lithium-ion batteries.  相似文献   

8.
Core-shell Fe3O4@Fe nanoparticles embedded into porous N-doped carbon nanosheets was prepared by a facile method with NaCl as hard-template. The three-dimensional carbon architecture built by carbon nanosheets enhance the conductivity of the encapsulated Fe3O4@Fe nanoparticles and strengthen the structure stability suffering from volume expansion during extraction and insertion of lithium ions. Rich Pores enhance the surface between electrode and electrolyte, which short the transmission path of ions and electrons. The core-shell structure with Fe as core further improves charge transferring inside particles thus lead to high capacity. The as-prepared Fe3O4@Fe/NC composite displays an irreversible discharge capacity of 839 mAh g?1 at 1 A g?1, long cycling life (722.2 mAh g?1 after 500th cycle at 2 A g?1) and excellent rate performance (1164.2 and 649.2 mAh g?1 at 1 and 20 A g?1, respectively). The outstanding electrochemical performance of the Fe3O4@Fe/NC composite indicates its application potential as anode material for LIBs.  相似文献   

9.
We prepared nanocrystalline Ti2/3Sn1/3O2 by a coprecipitation method starting from Ti(isopropoxide)4 and SnCl4·5H2O followed by calcination at 600 °C. TEM and XRD measurements reveal crystallite sizes of about 5 nm and a crystal structure equivalent to those of TiO2 rutile and SnO2 cassiterite. The local structure was investigated with 119Sn NMR and Sn Mössbauer spectroscopy. The material was cycled with C/20 at voltages between 3.0 and 0.02 V against Li metal. Specific capacities of 300 mAh g−1 were obtained for 100 cycles with voltage profiles very similar to those of pure SnO2. Faster cycling leads to strong decrease of the capacities but after returning to C/20 the initial values are obtained.  相似文献   

10.
In addition to lattice doping and carbon-coating, surface modification with other metal oxides can also improve the electrochemical performance of LiFePO4 powders. In this work, highly conductive vanadium oxide (V2O3) is in situ produced during the synthesis of carbon-coated LiFePO4 (LiFePO4/C) powders by a solid state reaction process and acts as a surface modifier. The structures and compositions of LiFePO4/C samples containing 0-10 mol% vanadium are analyzed by X-ray diffraction, Raman spectroscopy, scanning electron microscopy and transmission electron microscopy. Their electrochemical properties are also characterized with galvanostatic cell cycling and cyclic voltammetry. It is found that vanadium is present in the form of V2O3 that is incorporated in the carbon phase. The vanadium-modified LiFePO4/C samples show improved rate capability and low-temperature performance. Their apparent lithium diffusion coefficient is in the range of 10−12 to 10−10 cm2 s−1 depending on the vanadium content. Among the investigated samples, the one with 5 mol% vanadium exhibits the best electrochemical performance.  相似文献   

11.
Sn2Fe/Al2O3/C nanocomposites are synthesized using a high-energy, mechanical milling method with thermally synthesized Sn2Fe, Al2O3 and carbon (Super P) powders. The effect of Al2O3 addition on the microstructure of the Sn2Fe/Al2O3/C nanocomposites is examined. The electrochemical characteristics of the material as an anode in lithium-ion batteries are also evaluated. High-resolution transmission electron microscopy shows that the crystallite size of active Sn2Fe in the Sn2Fe/Al2O3/C nanocomposite is smaller than that of the Sn2Fe/C nanocomposite without Al2O3. A decrease in the initial irreversible capacity and enhanced cycle performance of the Sn2Fe/Al2O3/C nanocomposite electrode are observed.  相似文献   

12.
Nanostructured Fe3O4 nanoparticles were prepared by a simple sonication assisted co-precipitation method. Transmission electron microscopy, X-ray diffraction and BET surface area analysis confirmed the formation of ∼20 nm crystallites that constitute ∼200 nm nanoclusters. Galvanostatic charge-discharge cycling of the Fe3O4 nanoaprticles in half cell configuration with Li at 100 mA g−1 current density exhibited specific reversible capacity of 1000 mAh g−1. The cells showed stability at high current charge-discharge rates of 4000 mA g−1 and very good capacity retention up to 200 cycles. After multiple high current cycling regimes, the cell always recovered to full reversible capacity of ∼1000 mAh g−1 at 0.1 C rate.  相似文献   

13.
Strontium titanate nanoparticles have been synthesized using a combination of sol-precipitation and hydrothermal techniques for subsequent testing as an anode material for lithium-ion batteries. The potentials associated with lithiation are 0.105 V and 0.070 V vs. Li/Li+ and 0.095 V and 0.142 V vs. Li/Li+ during de-lithiation. These potentials are significantly lower than the 1.0 V to 1.5 V vs. Li/Li+ typically reported in the literature for titanates. In an attempt to improve the lithiation and de-lithiation kinetics, as well as capacity retention, SrTiO3 nanoparticles were platinized using a photoinduced reduction of chloroplatinic acid. No significant changes in the morphology or crystal structure of the platinized nanoparticles were observed as a result of the reduction reaction. The voltage profile, charge and discharge kinetics, and cyclability of the platinized SrTiO3 nanoparticles are compared to that of the non-platinized SrTiO3 nanoparticles.  相似文献   

14.
A unique double core-shell structure of Si@PANI@TiO2 nanocomposite is synthesized by a simple in-situ growth method. The two shells of polyaniline (PANI) and TiO2, hand in hand, play a key role to improve the electrochemical performance: First, the flexible properties of polyaniline (PANI) effectively accommodate the volume change of Si during the cycling. Second, the good mechanical feature of TiO2 can maintain the structural integrity and attenuate the volume expansion of Si cores. Finally, both of polyaniline and the lithiated TiO2 enhance the conductivity of Si, which promotes the electrons transport. Resulting in the Si@PANI@TiO2 double core-shell nanocomposite exhibits remarkable synergy in large, reversible lithium storage, delivering a reversible capacity as high as 1027 mAh g?1 after 500 cycles and a superior rate capacity of 640 mAh g?1, at a current of 500 and 4000 mA g?1, respectively. This excellent cycling and high-rate capability can be ascribed to the unique and well-designed double core-shell structure with the synergistic effect between polyaniline (PANI) and TiO2.  相似文献   

15.
MoO3 nanobelts are synthesized by a simple hydrothermal route followed by carbon coating. The effects of the carbon coating on the nanobelts are investigated by Raman spectroscopy, X-ray diffraction (XRD), scanning electron microscope (SEM) with an energy dispersive spectrometer (EDS), a transmission electron microscope (TEM), and galvanostatic cycling. As observed from the TEM and SEM images, the C-MoO3 nanobelts have a diameter of 150 nm and a length of 5-8 μm. In the electrochemical results, the C-MoO3 nanobelts exhibit excellent cycling stability after being cycled at a current rate of 0.1 C, maintaining their capacity at 1064 mAh g−1 after 50 cycles. These results are better than those for a bare MoO3 nanobelt electrode. The excellent electrochemical performance of the C-MoO3 nanobelts can be attributed to the effects of the carbon coating which stabilizes the structure of the MoO3, enhances the ionic/electrical conductivity, and moreover, can serve as a buffering agent to absorb the volume expansion during the Li+ intercalation process.  相似文献   

16.
A simple approach is proposed to prepare C-SiO2 composites as anode materials for lithium ion batteries. In this novel approach, nano-sized silica is soaked in sucrose solution and then heat treated at 900 °C under nitrogen atmosphere. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) analysis shows that SiO2 is embedded in amorphous carbon matrix. The electrochemical test results indicate that the electrochemical performance of the C-SiO2 composites relates to the SiO2 content of the composite. The C-SiO2 composite with 50.1% SiO2 shows the best reversible lithium storage performance. It delivers an initial discharge capacity of 536 mAh g−1 and good cyclability with the capacity of above 500 mAh g−1 at 50th cycle. Electrochemical impedance spectra (EIS) indicates that the carbon layer coated on SiO2 particles can diminish interfacial impedance, which leads to its good electrochemical performance.  相似文献   

17.
The nickel foam-supported porous NiO-Ni nanocomposite synthesized by electrostatic spray deposition (ESD) technique was investigated as anodes for lithium ion batteries. This anode was demonstrated to exhibit improved cycle performance as well as good rate capability. Ni particles in the composites provide a highly conductive medium for electron transfer during the conversion reaction of NiO with Li+ and facilitate a more complete decomposition of Li2O during charge with increased reversibility of conversion reaction. Moreover, the obtained porous structure is benefical to buffering the volume expansion/constriction during the cycling.  相似文献   

18.
Li2Ti6O13 has been prepared from Na2Ti6O13 by Li ion exchange in molten LiNO3 at 325 °C. Chemical analysis and powder X-ray diffraction study of the reaction product respectively indicate that total Na/Li exchange takes place and the Ti-O framework of the Na2Ti6O13 parent structure is kept under those experimental conditions. Therefore, Li2Ti6O13 has been obtained with the mentioned parent structure. An important change is that particle size is decreased significantly which is favoring lithium insertion. Electrochemical study shows that Li2Ti6O13 inserts ca. 5 Li per formula unit in the voltage range 1.5-1.0 V vs. Li+/Li, yielding a specific discharge capacity of 250 mAh g−1 under equilibrium conditions. Insertion occurs at an average equilibrium voltage of 1.5 V which is observed for oxides and titanates where Ti(IV)/Ti(III) is the active redox couple. However, a capacity loss of ca. 30% is observed due to a phase transformation occurring during the first discharge. After the first redox cycle a high reversible capacity is obtained (ca. 160 mAh g−1 at C/12) and retained upon cycling. Taking into consideration these results, we propose Li2Ti6O13 as an interesting material to be further investigated as the anode of lithium ion batteries.  相似文献   

19.
A novel CuO-nanotubes/SnO2 composite was prepared by a facile solution method and its electrochemical properties were investigated as the anode material for Li-ion battery. The as-prepared composite consisted of monoclinic-phase CuO-nanotubes and cassiterite structure SnO2 nanoparticles, in which SnO2 nanoparticles were dramatically decorated on the CuO-nanotubes. The composite showed higher reversible capacity, better durability and high rate performance than the pure SnO2. The better electrochemical performance could be attributed to the introducing of the CuO-nanotubes. It was found that the CuO-nanotubes were reduced to metallic Cu in the first discharge cycle, which can retain tube structure of the CuO-nanotubes as a tube buffer to alleviate the volume expansion of SnO2 during cycling and act as a good conductor to improve the electrical conductivity of the electrodes.  相似文献   

20.
One-dimensional (1D) nanosize electrode materials of lithium iron phosphate (LiFePO4) nanowires and Co3O4–carbon nanotube composites were synthesized by the hydrothermal method. The as-prepared 1D nanostructures were structurally characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. We tested the electrochemical properties of LiFePO4 nanowires as cathode and Co3O4–carbon nanotubes as anode in lithium-ion cells, via cyclic voltammetry and galvanostatic charge/discharge cycling. LiFePO4 nanorod cathode demonstrated a stable performance over 70 cycles, with a remained specific capacity of 140 mAh g−1. Nanocrystalline Co3O4–carbon nanotube composite anode exhibited a reversible lithium storage capacity of 510 mAh g−1 over 50 cycles. 1D nanostructured electrode materials showed strong potential for lithium-ion batteries due to their good electrochemical performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号