首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Post-reforming experimental results for the complete removal of light hydrocarbons from diesel reformate are introduced in part I. In part II of the paper, an integrated diesel fuel processor is investigated for the stable operation of SOFCs. Several post-reforming processors have been operated to suppress both sulfur poisoning and carbon deposition on the anode catalyst. The integrated diesel fuel processor is composed of an autothermal reformer, a desulfurizer, and a post-reformer. The autothermal reforming section in the integrated diesel fuel processor effectively decomposes aromatics, and converts fuel into H2-rich syngas. The subsequent desulfurizer removes sulfur-containing compounds present in the diesel reformate. Finally, the post-reformer completely removes the light hydrocarbons, which are carbon precursors, in the diesel reformate. We successfully operate the diesel reformer, desulfurizer, and post-reformer as microreactors for about 2500 h in an integrated mode. The degradation rate of the overall reforming performance is negligible for the 2000 h, and light hydrocarbons and sulfur-containing compounds are completely removed from the diesel reformate.  相似文献   

2.
In the present study, the effects of spraying conditions on reforming performance were investigated experimentally. Kerosene was used as the liquid fuel for reforming and sprayed by a twin fluid nozzle to facilitate uniform mixing with air and water (steam) at the downstream. The separate effects of the mean drop size of the fuel, the position of the catalytic bed and the air flow rate on the reforming efficiency were analyzed, and the reasons for the results were discussed by examining the temperature distribution inside the reformer and also through visualization of the catalytic bed during the reforming process. The overall reforming efficiency was significantly improved by spraying the fuel because the mixing between the reactants was enhanced. When the distance from the nozzle to the catalytic bed became closer, higher reforming performance was achieved with larger fuel drops due to the more rapid penetration into the catalytic bed with larger momentum. With a larger amount of air supply to the system, fuel reformation was promoted by the high reaction temperature. On the other hand, with the longer distance between the nozzle and the catalytic bed, the poor mixing between the fuel and other reactants (due to the side-wall collision of fuel drops and possible formation of liquid film along the wall) predominated over other effects, and the drop size effect was not accordingly observed.  相似文献   

3.
A miniaturized fuel processor for LPG has been developed and put into operation as compact hydrogen supply system for low power applications. The fuel processor consists of an integrated micro-structured evaporator and a micro-structured reformer both integrated with micro-structured catalytic burners, heat exchangers, and a micro-structured water-gas shift (WGS) stage. In the current paper, performance data of a coupled LPG steam reformer/catalytic burner are presented, which has been running stably over 1060 h with repeated start-up and shut-down cycles. On top of that, some performance data of complete LPG fuel processors will be shown, which have been operated up to 3500 h in combination with high temperature PEM fuel cell stacks. These fuel processing systems are capable to convert LPG with a nominal hydrogen production rate of 0.263 Nm3 h−1. It could be demonstrated, that the micro-structured devices are not only compact but show also high reliability and durability.  相似文献   

4.
A rapid start-up strategy of a diesel reformer for on-board fuel cell applications was developed by fuel cell integration. With the integration with metal-supported solid oxide fuel cell which has high thermal shock resistance, a simpler and faster start-up protocol of the diesel reformer was obtained compared to that of the independent reformer setup without considering fuel cell integration. A reformer without fuel cell integration showed unstable reactor temperatures during the start-up process, which affects the reforming catalyst durability. By utilizing waste heat from the fuel cell stack, steam required at the diesel autothermal reforming could be stably provided during the start-up process. The developed diesel reformer was thermally sustainable after the initial heat-up process. As a result, the overall start-up time of the reformer after the diesel supply was reduced to 9 min from the diesel supply compared to 22 min without fuel cell integration.  相似文献   

5.
In this work, cold start-up of a methane fuel processor is explored. The experimental fuel processor is intended to provide hydrogen for a proton exchange membrane (PEM) fuel cell for the power generation (3 kWe). A dynamic model describing a series of reactors, the reformer, three water–gas shift reactors, and preferential reactor is constructed. Two important factors for rapid start-up are identified: speed of temperature front propagation and acceptable CO concentration. Steady-state analyses reveal that the fuel feed flow rate with fixed steam-to-carbon and air-to-carbon ratios is an ideal manipulated variable. Considering both large initial heat flux and gradual transition back to nominal operation, the shape of feed manipulation is determined. With the feed scenario available, the fuel processor start-up can be formulated as a constrained optimization problem and can be solved numerically. From optimization result, a heuristic is generated for rapid start-up of a fuel processor. This leads to a 25% improvement in the start-up time. Finally, issues of design modification are explored for further reduction in the start-up time.  相似文献   

6.
A system model was used to develop an autothermal reforming fuel processor to meet the targets of 80% efficiency (higher heating value) and start-up energy consumption of less than 500 kJ when operated as part of a 1-kWe natural-gas fueled fuel cell system for cogeneration of heat and power. The key catalytic reactors of the fuel processor – namely the autothermal reformer, a two-stage water gas shift reactor and a preferential oxidation reactor – were configured and tested in a breadboard apparatus. Experimental results demonstrated a reformate containing ∼48% hydrogen (on a dry basis and with pure methane as fuel) and less than 5 ppm CO. The effects of steam-to-carbon and part load operations were explored.  相似文献   

7.
The article explores the thermodynamics of an alternate hydrogen generation process - dry autothermal reforming and its comparison to autothermal reforming process of isooctane for use in gasoline fuel processors for SOFC. A thermodynamic analysis of isooctane as feed hydrocarbon for autothermal reforming and dry autothermal reforming processes for feed OCIR (oxygen to carbon in isooctane ratio) from 0.5 to 0.7 at 1 bar pressure under analogous thermoneutral operating conditions was done using Gibbs free energy minimization algorithm in HSC Chemistry. The trends in thermoneutral points (TNP), important product gas compositions at TNPs and fuel processor energy requirements were compared and analyzed. Dry autothermal reforming was identified as a less energy consuming alternative to autothermal reforming as the syngas can be produced with lower energy requirements at thermoneutral temperatures, making it a promising candidate for use in gasoline fuel processors to power the solid oxide fuel cells. The dry autothermal reforming process for syngas production can also be used for different fuels.  相似文献   

8.
The application of heterogeneous catalysis has an important role to play in the successful commercial development of solid oxide fuel cell (SOFC) technology. In this paper, we present an SOFC that combines a catalyst layer with a conventional anode, allowing internal reforming via partial oxidation (POX) of fuels such as methane, propane, butane, biomass gas, etc., without coking and yielding stable power output. The catalyst layer is fabricated on the anode simply by catalyst support coating and reforming catalyst impregnation. The composition and microstructure of catalyst support layer as well as the catalyst composition was easily tailored to meet the demand of in situ reforming. The usage of catalyst layer as an integrated part of the traditional SOFC will provide a simple low-cost power-generating system at substantially higher fuel efficiency and faster start-ups, and may accelerate the application of SOFCs through the direct use of hydrocarbon fuels.  相似文献   

9.
The effect of a nano-honeycomb cathode on the performance of a microtubular solid oxide fuel cell is investigated. We successfully prepared nano-honeycomb cathodes with high unsealing pore porosity (~64.6%) and high structural strength by freeze casting, which improved the adsorption and dissociation of oxygen. We added gadolinium doped ceria (GDC) nanopowder to the lanthanum strontium cobalt ferrite (LSCF) cathode material. The cell performance of the nano-cell structure of the GDC-LSCF cathode is significantly improved compared to a traditional GDC-LSCF cathode with a spongy porous structure. At 750 °C, the current density is 1450 mA cm?2 and the power density is 475 mW cm?2, which is better than that of conventional cathode structures. We discussed the effects of the honeycomb structure on the cell, including the migration of silver paste as a cathodic collector to the GDC-LSCF interface and the improvement of the activity of the oxygen electrodes.  相似文献   

10.
In this study, a natural gas fuel processor was experimentally and theoretically investigated. The constructed 2.0 kWth fuel processor is suitable for a residential-scale high temperature proton exchange membrane fuel cell. The system consists of an autothermal reformer; gas clean-up units, namely high and low-temperature water-gas shift reactors; and utilities including feeding unit, burner, evaporator and heat exchangers. Commercial monolith catalysts were used in the reactors. The simulation was carried out by using ASPEN HYSYS program. A validated kinetic model and adiabatic equilibrium model were both presented and compared with experimental data. The nominal operating conditions which were determined by the kinetic model were the steam-to-carbon ratio of 3.0, the oxygen-to-carbon ratio of 0.5 and the inlet temperatures of 450 °C for autothermal reformer, 400 °C for high-temperature water-gas shift reactor and 310 °C for low-temperature water-gas shift reactor. Experimental results at the nominal condition showed that the performance criteria of the hydrogen yield, the fuel conversion and the efficiency were 2.53, 93.5% and 82.3% (higher heating value-HHV), respectively. The validated kinetic model was further used for the determination of 2–10kWthermal fuel processor efficiency which was increasing linearly up-to 86.3% (HHV).  相似文献   

11.
Solid oxide fuel cells (SOFCs) constitute an attractive power-generation technology that converts chemical energy directly into electricity while causing little pollution. NanoDynamics Energy (NDE) Inc. has developed micro-tubular SOFC-based portable power generation systems that run on both gaseous and liquid fuels. In this paper, we present our next generation solid oxide fuel cells that exhibit total efficiencies in excess of 60% running on hydrogen fuel and 40+% running on readily available gaseous hydrocarbon fuels such as propane, butane etc. The advanced fuel cell design enables power generation at very high power densities and efficiencies (lower heating value-based) while reforming different hydrocarbon fuels directly inside the tubular SOFC without the aid of fuel pre-processing/reforming. The integrated catalytic layered SOFC demonstrated stable performance for >1000 h at high efficiency while running on propane fuel at sub-stoichiometric oxygen-to-fuel ratios. This technology will facilitate the introduction of highly efficient, reliable, fuel flexible, and lightweight portable power generation systems.  相似文献   

12.
Biodiesel is considered as a renewable hydrogen source for solid oxide fuel cells (SOFCs). This study contributes to a fundamental understanding of biodiesel autothermal reforming (ATR), which has not yet been widely explored in the open literature. Ultra-low sulfur diesel (ULSD) ATR is established as a baseline for this analysis. This work applies a micro-soot meter based on a photo-acoustic method to quantify the condensed carbon from a single-tube reactor, and uses a mass spectrometer to measure the effluent gas composition under different operating conditions (reformer temperature, steam/carbon ratio, oxygen/carbon ratio, and gas hourly space velocity). The key objective is to identify the optimum operating environment for biodiesel ATR with carbon-free deposition and peak hydrogen yield. Thermodynamic analysis based on the method of total Gibbs free energy minimization is used to evaluate the equilibrium composition of effluent from the reformer. The experimental investigations complimented with this theoretical analysis of biodiesel ATR enable effectively optimizing the onboard reforming conditions. This study is one component of a three-part investigation of bio-fuel reforming, also including fuel vaporization and reactant mixing (Part 1) and biodiesel–diesel blends (Part 3).  相似文献   

13.
This report investigates the properties of nickel/gadolinium-doped ceria (Ni/GDC) as anode material for bio-ethanol fueled SOFC. The Ni/GDC cermets with 18 and 44 wt.% Ni were prepared by a hydrothermal method. Ethanol decomposition, steam reforming, and partial oxidation of ethanol were studied using a fixed-bed reactor at 1123 K. Carbon was formed only under dry ethanol for both catalysts. The addition of water or oxygen to the feed inhibited the formation of carbon. Ni/GDC was used as the anode current collector layer and as a catalytic layer in single cells tests. No deposits of carbon were detected in single cells with Ni/GDC catalytic layer after 50 h of continuous operation under direct (dry) ethanol. This result was attributed to the catalytic properties of the Ni/GDC layer and the operation mechanism of gradual internal reforming, in which the oxidation of hydrogen provides the steam for ethanol reforming, thus avoiding carbon deposition.  相似文献   

14.
Catalytic reforming is a technology to produce hydrogen and syngas from heavy hydrocarbon fuels in order to supply hydrogen to fuel cells. A lab-scale 2.5 kWt autothermal reforming (ATR) system with a specially designed reformer and combined analysis of balance-of-plant was studied and tested in the present study. NiO–Rh based bimetallic catalysts with promoters of Ce, K, and La were used in the reformer. The performance of the reformer was studied by checking the hydrogen selectivity, COx selectivity, and energy conversion efficiency at various operating temperatures, steam to carbon ratios, oxygen to carbon ratios, and reactants' inlet temperatures. The experimental work firstly tested n-dodecane as the surrogate of Jet-A fuel to optimize operating conditions. After that, desulfurized commercial Jet-A fuel was tested at the optimized operating conditions. The design of the reformer and the catalyst are recommended for high performance Jet-A fuel reforming and hydrogen-rich syngas production.  相似文献   

15.
Steam and autothermal reforming of propane over Ni-Rh/GDC catalysts prepared by coprecipitation and by Pechini method were investigated in the temperature range 873-1073 K. The weight ratio for Ni, Rh and Ce0.8Gd0.2O2 (45:5:50) and the operating temperatures were chosen in order to gain propaedeutical information on fuel reactivity under typical intermediate solid oxide fuel cell (IT-SOFC) operating conditions.The Pechini synthesis allows to obtain catalysts with lower surface area, smaller nickel crystallites and a bimodal distribution of rhodium in comparison to the coprecipitation method. Despite the different methods of synthesis lead to catalysts with different morphological and structural properties, the activity of catalysts is quite similar.At reaction temperature higher than 973 K, under both steam reforming (SR) and autothermal reforming (ATR), the catalysts show high propane conversion and syngas (H2 + CO) productivity.Deactivation of catalysts was observed at 873 and 973 K under SR conditions due to coke formation.In ATR, coke formation was almost completely depressed and the catalysts resulted to be very stable even at low reaction temperature (873 K). In SR coke formation occurs with higher rate on the catalyst having higher Ni dispersion, probably since propane cracking reaction is the pre-eminent phenomenon in promoting coke formation.  相似文献   

16.
A power unit constituted by a reformer section, a H2 purification section and a fuel cell stack is being tested c/o the Dept. of Physical Chemistry and Electrochemistry of Università degli Studi di Milano, on the basis of a collaboration with HELBIO S.A. Hydrogen and Energy Production Systems, Patras (Greece), supplier of the unit, and some sponsors (Linea Energia S.p.A., Parco Tecnologico Padano and Provincia di Lodi, Italy). The system size allows to co-generate 5 kWe (220 V, 50 Hz a.c.) + 5 kWt (hot water at 65 °C) as peak output. Bioethanol, obtainable by different non-food-competitive biomass, is transformed into syngas by a pre-reforming and reforming reactors couple and the reformate is purified from CO to a concentration below 20 ppmv, suitable to feed a proton exchange membrane fuel cell (PEMFC) stack that will be integrated in the fuel processor in a second step of the experimentation. This result is achieved by feeding the reformate to two water gas shift reactors, connected in series and operating at high and low temperature, respectively. CO concentration in the outcoming gas is ca. 0.4 vol% and the final CO removal to meet the specifications is accomplished by two methanation reactors in series. The second methanation step acts merely as a guard, since ca. 15 ppmv of CO are obtained already after the first reactor.  相似文献   

17.
A complete miniaturized methanol fuel processor/fuel cell system was developed and put into operation as compact hydrogen supplier for low power application. The whole system consisting of a micro-structured evaporator, a micro-structured reformer and two stages of preferential oxidation of CO (PROX) reactor, micro-structured catalytic burner, and fuel cell was operated to evaluate the performance of the whole production line from methanol to electricity. The performance of micro methanol steam reformer and PROX reactor was systematically investigated. The effect of reaction temperature, steam to carbon ratio, and contact time on the methanol steam reformer performance is presented in terms of catalytic activity, selectivity, and reformate yield. The performance of PROX reactor fed with the reformate produced by the reformer reactor was evaluated by the variation of reaction temperature and oxygen to CO ratio. The results demonstrate that micro-structured device may be an attractive power source candidate for low power application.  相似文献   

18.
This work describes the development of a compact ethanol fuel processor for small scale high temperature polymer electrolyte membrane fuel cell (HT-PEMFC) systems with 200–500 W electrical power output. Promising markets for reformer fuel cell systems based on ethanol are mobile or portable leisure and security power supply applications as well as small scale stationary off grid power supply and backup power. Main components of the fuel processor to be developed were the reformer reactor, the shift converter, a catalytic burner and heat exchangers. Development focused in particular on the homogeneous evaporation of the liquid reactants ethanol and water for the reformer and burner and on the development of an efficient and autarkic start-up method, respectively. Theoretical as well as experimental work has been carried out for all main components separately including for example catalyst screening and evaporator performance tests in a first project period. Afterwards all components have been assembled to a complete fuel processor which has been qualified with various operation parameter set-ups. A theoretically defined basic operation point could practically be confirmed. The overall start-up time to receive reformate gas with appropriate quality to feed an HT-PEMFC (xCO < 2%) takes around 30 min. At steady state operation the hydrogen power output is around 900 W with H2 and CO fractions of 41.2% and 1.5%, respectively.  相似文献   

19.
In the present study a two‐dimensional model of a tubular solid oxide fuel cell operating in a stack is presented. The model analyzes electrochemistry, momentum, heat and mass transfers inside the cell. Internal steam reforming of the reformed natural gas is considered for hydrogen production and Gibbs energy minimization method is used to calculate the fuel equilibrium species concentrations. The conservation equations for energy, mass, momentum and voltage are solved simultaneously using appropriate numerical techniques. The heat radiation between the preheater and cathode surface is incorporated into the model and local heat transfer coefficients are determined throughout the anode and cathode channels. The developed model has been compared with the experimental and numerical data available in literature. The model is used to study the effect of various operating parameters such as excess air, operating pressure and air inlet temperature and the results are discussed in detail. The results show that a more uniform temperature distribution can be achieved along the cell at higher air‐flow rates and operating pressures and the cell output voltage is enhanced. It is expected that the proposed model can be used as a design tool for SOFC stack in practical applications. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
This study presents a thermodynamic analysis of hydrogen production from an autothermal reforming of crude glycerol derived from a biodiesel production process. As a composition of crude glycerol depends on feedstock and processes used in biodiesel production, a mixture of glycerol and methanol, major components in crude glycerol, at different ratios was used to investigate its effect on the autothermal reforming process. Equilibrium compositions of reforming gas obtained were determined as a function of temperature, steam to crude glycerol ratio, and oxygen to crude glycerol ratio. The results showed that at isothermal condition, raising operating temperature increases hydrogen yield, whereas increasing steam to crude glycerol and oxygen to crude glycerol ratios causes a reduction of hydrogen concentration. However, high temperature operation also promotes CO formation which would hinder the performance of low-temperature fuel cells. The steam to crude glycerol ratio is a key factor to reduce the extent of CO but a dilution effect of steam should be considered if reforming gas is fed to fuel cells. An increase in the ratio of glycerol to methanol in crude glycerol can increase the amount of hydrogen produced. In addition, an optimal operating condition of glycerol autothermal reforming at a thermoneutral condition that no external heat to sustain the reformer operation is required, was investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号